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Nucleophagy is an organelle-selective subtype of autophagy that targets nuclear material
for degradation. The macroautophagic delivery of micronuclei to the vacuole, together with
the nucleus-vacuole junction-dependent microautophagic degradation of nuclear material,
were first observed in yeast. Nuclear pore complexes and ribosomal DNA are typically
excluded during conventional macronucleophagy and micronucleophagy, indicating that
degradation of nuclear cargo is tightly regulated. In mammals, similarly to other autophagy
subtypes, nucleophagy is crucial for cellular differentiation and development, in addition to
enabling cells to respond to various nuclear insults and cell cycle perturbations. A common
denominator of all nucleophagic processes characterized in diverse organisms is the
dependence on the core autophagic machinery. Here, we survey recent studies
investigating the autophagic processing of nuclear components. We discuss
nucleophagic events in the context of pathology, such as neurodegeneration, cancer,
DNA damage, and ageing.
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INTRODUCTION

Autophagy is an evolutionarily conserved catabolic process enabling cells to maintain homeostasis as
well as respond to stress conditions. Misfolded or aggregated proteins, damaged organelles and
invading pathogens can be recognized by respective types of selective autophagy. Autophagic cargos
are delivered to the vacuole/lysosomes in order to be degraded (Kroemer et al., 2010; Yang and
Klionsky, 2010; Mizushima and Komatsu, 2011). Defects in autophagy have been linked to a wide
range of pathological conditions, including cancer, neurodegeneration and inflammatory, metabolic
and infectious diseases (Dikic and Elazar, 2018; Levine and Kroemer, 2019; Kawabata and
Yoshimori, 2020). Deoxyribonucleic acid (DNA) damage or nuclear envelope dysfunction are
associated with aberrant nuclear activity, dynamics and cell signaling (Mijaljica et al., 2010; Hauer
and Gasser, 2017; Karoutas and Akhtar, 2021). Therefore, clearance of damaged nuclear components
is crucial for the maintenance of the nuclear integrity. Nucleophagy is the degradation of nuclear
material including nuclear membrane, nuclear lamina, nucleoplasm, nucleolus and DNA by the
autophagic machinery. From yeast to humans, nucleophagic events are monitored in a species- and a
context-specific manner.

Nucleophagy in Yeast
In the budding yeast, Saccharomyces cerevisiae, both macronucleophagy andmicronucleophagy have
been reported (Figure 1). Carbon and nitrogen deprivation or pharmacological inactivation of the
target of rapamycin complex 1 (TORC1) induce nucleophagy (Roberts et al., 2003; Mochida et al.,
2015). During macronucleophagy the nuclear cargo receptor, autophagy related protein (Atg) 39,
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which localizes to both inner and outer nuclear membrane (INM
and ONM, respectively), the perinuclear endoplasmic reticulum
(ER), and also decorates macronucleophagy cargo, interacts with
Atg8, a well-establishedmarker of the autophagic membrane. The
above receptor recognition results in micronuclei transfer/
engagement to vacuole at an Atg11-positive site (Mochida
et al., 2015; Otto and Thumm, 2021). Within its cytosolic
N-terminal region, Atg39 contains both an Atg8-interacting
motif (AIM) and an Atg11-binding region (11BR) enabling
Atg39 to interact directly with Atg8 and Atg11 respectively.
Fusion of autophagosome with vacuole is signified by a
reduction in the integral vacuolar membrane protein,
repressible alkaline phosphatase 8 (Pho8) indicating the initial
change in the vacuolar membrane composition at the fusion site.
Macronucleophagy substrates include the INM and ONM
excluding the nuclear pore complexes, granular nucleolus,
nucleolar proteins, spindle pole bodies, ribonucleic acid
(RNA), pre-ribosomes and parts of the nucleoplasm excluding
ribosomal DNA (Mostofa et al., 2018; Mostofa et al., 2019).

Micronucleophagy, also known as piecemeal microautophagy
of the nucleus (PMN), is restricted to the nucleus-vacuole junction
(NVJ), which is an inter-organelle contact site formed through the
direct interaction between the C-terminus of the integral
membrane protein, nucleus-vacuole junction protein 1 (Nvj1)
and the vacuolar membrane protein, vacuolar protein 8 (Vac8)
(Pan et al., 2000). An electrochemical gradient across the vacuolar
membrane and lipid-modifying enzymes promote invagination of
NVJs (Dawaliby and Mayer, 2010). Release of micronucleophagic
vesicles into the vacuole lumen requires the vacuolar-adenosine
triphosphatase (V-ATPase) activity. Micronucleophagy is

characterized by Atg11- and Atg8-positive structures localized
between the tips of the vacuolar invagination. Apart from the
essential cargo receptor Atg39, other Atg proteins required for
efficient micronucleophagy include the two ubiquitin-like
conjugation systems, Atg9-cycling system, phosphoinositide 3-
kinase (PI3K) complexes, cytoplasm-to-vacuole targeting (Cvt)-
specific proteins and homotypic vacuole fusion proteins (Krick
et al., 2008). Additional and exclusive micronucleophagy cargos
include the NVJs and the vacuolar membrane.

Interestingly, both NVJ1 and ATG39 upstream promoter
regions contain two putative stress-response element (STRE)
repeats, subjecting the two proteins under common expression
regulation (Moskvina et al., 1998; Gasch et al., 2000). In addition,
Nvj1 and Atg39 localization depends on the nuclear envelope-
localized phosphatase complex, nuclear envelope morphology
protein 1/sporulation-specific protein 7 (Nem1/Spo7) and the
phosphatidic acid phosphatase 1 (Pah1) upon TORC1
inactivation (Siniossoglou et al., 1998; Dubots et al., 2014;
Rahman et al., 2018). The yeast Nem1/Spo7-Pah1 axis is
conserved to mammalian cells, as the orthologous C-terminal
domain (CTD) nuclear envelope phosphatase 1 (CTDNEP1)/
nuclear envelope phosphatase regulatory subunit 1 (NEP1R1)-
lipin complex which localises to the nuclear envelope as well (Kim
et al., 2007). Hemizygous mutations of CTDNEP1 were found in
human medulloblastoma, a common type of primary brain
cancer in children (Pugh et al., 2012).

Autophagy of Nuclear Pore Complexes
Nuclear pore complexes (NPCs) are large protein channels
penetrating the nuclear envelope, responsible for

FIGURE 1 | Nucleophagy in S. cerevisiae. Schematic models of macronucleophagy, micronucleophagy and autophagy of NPCs. Rectangular shapes of Atg8,
Atg11, Atg39, NPCR, Nup159, Nvj1 and Vac8, outside of the nucleus represent single proteins. Oval shapes of Atg8, Atg11 and Atg39 represent microscopically-
observed accumulation of the respective proteins. IMN, inner nuclear membrane; NPCR, nuclear pore complex unknown receptor; NPC, nuclear pore complex; NVJ,
nucleus-vacuole junction; ONM, outer nuclear membrane; pnER, perinuclear endoplasmic reticulum.
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nucleocytoplasmic transport of various cellular components
(Hampoelz et al., 2019). Expectedly, accumulating evidence
show that disruption of NPC integrity is linked to ageing,
cancer and neurodegenerative diseases (D’Angelo et al., 2009;
Simon and Rout, 2014; Sakuma and D’Angelo, 2017). In yeast and
Caenorhabditis elegans, age-dependent deterioration of nuclear
pore assembly decreases transport dynamics and leads to
cytoplasmic protein leak into the nucleus, respectively
(D’Angelo et al., 2009; Rempel et al., 2019). In mouse and
human neuronal cells, cytoplasmic mislocalization and
aggregation of transactive response (TAR) DNA-binding
protein-43 (TDP-43) disrupts nuclear pore complexes and
furthermore nucleocytoplasmic transport in amyotrophic
lateral sclerosis and frontotemporal dementia (ALS and FTD)
disease spectrum (Chou et al., 2018). In human metastatic warm-
autopsy prostate tumour tissues the nuclear envelope pore
membrane protein 121 (POM121) was found upregulated
(Rodriguez-Bravo et al., 2018). POM121 enhances importin-
dependent nuclear transport of oncogenic and prostate cancer-
specific transcription factors, promoting prostate cancer
aggressiveness. Targeting the POM121-importin β axis was
proposed as a therapeutic strategy for lethal prostate cancer.

Recently, scientists gained insights into the possible role of
autophagy in NPC turnover (Figure 1). Upon nitrogen starvation
turnover of NPCs involves vacuolar proteases and is mediated via
the direct recognition of the cytoplasmically exposed nucleoporin
159 (Nup159) by Atg8 (Lee et al., 2020). Another study suggests
that upon inactivation of TORC1 the above interaction is
responsible for the degradation of the exact nucleoporin not
assembled into the NPC, distinguishing “NPC-phagy” from
“nucleoporinophagy” (Tomioka et al., 2020). Authors propose
the existence of an unknown autophagy receptor for NPC-phagy.

Complete and Unconventional Modes of
Nucleophagy
Programmed nuclear death, programmed nuclear destruction
and an uncharacterized mode of nucleophagy represent modes
of nucleophagic degradation of the entire nucleus (Akematsu
et al., 2010; Shoji et al., 2010; Eastwood et al., 2012; Liu and Yao,
2012; Corral-Ramos et al., 2015; Kikuma et al., 2017). However,
the majority of those studies have been performed in
multinucleate cells of filamentous fungi where one particular
nucleus is selected among multiple nuclei and eliminated by
nucleophagy without causing cell lethality. In yeast, after
prolonged nitrogen starvation, late nucleophagy (LN) enables
late delivery of nucleoplasm components to the vacuole, a distinct
process from PMN that commences soon after nitrogen
deprivation and requires nucleus-vacuole intermediates
(Mijaljica et al., 2012).

Nucleophagy in Mammals
In mammals, nucleophagy has mainly been monitored under
pathological conditions, such as neurodegeneration and cancer
(Table 1). Nuclear lamina, which is absent in yeast, is associated
with mammalian INM, provides mechanical stability and
supports a variety of nuclear activities such as chromatin

organization, DNA replication, RNA transcription, cell cycle
regulation, nuclear migration and apoptosis (Karoutas and
Akhtar, 2021). Lamin A/C and lamin B, two of the major
constituents of nuclear lamina have been identified as
mammalian nucleophagic substrates (Dou et al., 2015).

Microtubule associated protein 1 light chain 3 (MAP1LC3,
hereafter referred to as LC3), a mammalian homologue of Atg8,
resides both in the cytoplasm and the nucleus (Drake et al., 2010).
Upon starvation, LC3 undergoes nucleocytoplasmic transport
and activation, through deacetylation by the nuclear-localized
deacetylase sirtuin 1 (Sirt1) (Huang et al., 2015). However, on the
one hand, such a transport probably represents a regulatory
mechanism for LC3 subcellular distribution and availability
upon nutrient starvation, rather than a nucleophagy-related
process. On the other hand, bimolecular fluorescence
complementation (BiFC) suggests that nuclear localized LC3
directly interacts with lamin B1 and indirectly to lamin-
associated chromatin domains (LADs) at the site of nuclear
lamina (Dou et al., 2015). This interaction is dependent on
LC3 lipidation. Nucleus-to-cytoplasm transport and delivery of
lamin B1, but not lamin A/C or B2, to lysosomes for degradation
is mediated upon induced oncogenic rat sarcoma (RAS) gene in
primary, but not immortalized, human cells. Either autophagy
inhibition or LC3-lamin B1 interaction inhibition impair lamin
B1 degradation and interestingly, attenuate oncogene-induced
senescence in human cells (Dou et al., 2015). These findings
suggest that autophagic degradation of a nuclear lamina
component could protect cells from tumorigenesis.

DNA damage induces nuclear accumulation of the small
ubiquitin-related modifier (SUMO) E2 ligase, ubiquitin
conjugating enzyme E2 I/ubiquitin conjugating enzyme 9
(UBE2I/UBC9) in human MDA-MB-231 and MCF-7 breast
cancer cell lines (Li et al., 2019). UBE2I/UBC9 SUMOylates
lamin A/C and enables the interaction with LC3, which was
required for nucleophagic degradation of lamin A/C and leaked
nuclear DNA. Taking together, current findings suggest that
lamins represent a prominent category of nuclear components
able to integrate signaling from diverse nuclear insults and
propagate nucleophagic signaling upon direct interaction
with LC3.

Laminopathies, a group of diverse genetic disorders caused by
mutations in proteins of the nuclear intermediate filament
network have been linked to muscular dystrophy,
neurodegeneration and premature ageing as well.
Emerinopathies is a distinct group of disorders caused by
mutations in the EMD gene encoding emerin, a nuclear
envelope-anchored protein implicated in the regulation of
transcription factor activity, cell signaling, nuclear architecture,
chromatin condensation, organization, and epigenetic
modification, nucleo-cytoskeletal mechanotransduction and
cellular polarity organization (Koch and Holaska, 2014).
Emerinopathies result in muscular dystrophies as well as
cardiomyopathy and atrial fibrillation. Consequently,
mutations or loss of lamins or emerin perturb nuclear
architecture and cause nuclear membrane fragility especially in
cells which are constantly subjected to mechanical stress such as
skeletal and muscle cells (Sakaki et al., 2001; Mislow et al., 2002;
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Bengtsson and Wilson, 2004; Broers et al., 2004; Lammerding
et al., 2004; Zhang et al., 2005). Lamins are a prominent target of
nucleophagy during oncogenesis and neurodegeneration, resulting
in cellular senescence and neuronal death, respectively. Perinuclear
vacuolar structures were observed in skeletal and cardiac muscles
of human and mouse nuclear envelopathies origin (a collective
term for pathologies caused by mutations in the genes encoding
lamins and emerin) (Park et al., 2009). These vacuolar structures
represent autophagosomes/autolysosomes. Lamin A, lamin B and
emerin are accumulated in the interface of those autophagic
structures and the nuclear membrane. Moreover DNA, histone
H1 and serine-139 phosphorylated H2A histone family, member X
(γH2AX) are present into the perinuclear autophagosomes.
γH2AX represents a bona fide marker of DNA double-strand
breaks (Rogakou et al., 1998). Therefore, nucleophagy contributes
to the rapid repair of multiple nuclear components. Similar
structures were observed in wild type cells although to a much
lower frequency, showing that nucleophagy can be utilized as a
physiological response to conditions that cause spontaneous
nuclear damage (Park et al., 2009).

A variety of cell cycle perturbations manifest increased
numbers of cytosolic micronuclei and autophagosomes (Rello-
Varona et al., 2012). A subpopulation of micronuclei, positive for
chromatin and the histone H2B colocalize with green fluorescent
protein (GFP) tagged LC3 in an ATG5- and ATG7-dependent
manner, indicating that micronuclei can be subjected to
autophagic degradation and ultimately contribute to genome
stability. The autophagic sequestration of micronuclei was
supported by electron microscopy analyses. Moreover,
autophagic micronuclei found positive for the autophagic
receptor p62/sequestosome 1 (SQSTM1), lamin B1 and the
DNA damage marker γH2AX (Rello-Varona et al., 2012).

Neurodegeneration
Autophagy, serving as a housekeeping quality control
mechanism, is distinctly essential for long-living cells and
frequently fails during neurodegeneration. In a mouse model
of the polyglutamine disease, dentatorubral-pallidoluysian
atrophy (DRPLA) as well as human fibroblasts of DRPLA
patients, pathological manifestations include inhibition of LC3

lipidation, p62 accumulation and reduced transcription factor EB
(TFEB) expression, rendering autophagy a stalled mechanism
(Baron et al., 2017). Alternative clearance pathways including
Golgi membrane-associated and nucleophagy-based lamin B1
degradation are activated in fibroblasts derived from DRPLA and
Vici syndrome patients (Baron et al., 2017). The above results in
dramatic nuclear breakdown and promotes terminal cell atrophy
and death.

Cancer
There are contradicting pieces of evidence regarding
autophagy modulation and cancer treatment (Levy et al.,
2017). Chemotherapy and radiotherapy as well as other
currently available cancer treatments cause DNA damage
and intervene autophagy indirectly. Autophagy induction
has been shown to be beneficial when treating cancer at the
beginning of the tumour establishment. Nucleophagic
elimination of problematic genetic material, can maintain
nuclear integrity and genomic stability during
tumorigenesis. However, autophagy may promote cancer
cell survival and metastasis in late stage tumour
microenvironment where nutrient availability is limited.

In argininosuccinate synthetase 1 (ASS1)-deficient prostate
cancer cells, arginine depletion induces giant autophagosome
formation, nuclear membrane rupture, and interestingly
cytoplasmic histone-associated DNA encaptured by
autophagosomes (Changou et al., 2014). Thus, the
fundamental process of metabolic stress-based cancer therapy
could involve mechanisms related to DNA leakage, and
chromatin autophagy. In both phagocytotic and non-
phagocytotic cells which are either deficient for the lysosomal
deoxyribonuclease 2a (Dnase2a) or deficient for autophagy,
damaged DNA is exported from nucleus and accumulates in
the cytosol (Lan et al., 2014). The above indicates that damaged
chromosomal DNA could be physiologically cleared by
autophagy. Failure of extranuclear DNA clearance induces
inflammation via the stimulator of interferon response cyclic
guanosine monophosphate-adenosine monophosphate
(cGAMP) interactor (Sting)-dependent cytosolic DNA-sensing
pathway.

TABLE 1 | Nucleophagy in mammals.

Nucleophagic signaling Cargo composition Physiological/pathological setting Reference

Nuclear envelopathies DNA, H1, γ-H2AX Nuclear damage response Park et al. (2009)
Cell cycle perturbation DNA, H2B, γ-H2AX, lamin B1 Genome stability Rello-Varona et al. (2012)
Senescence DNA Stability of senescence/Tumour suppression Ivanov et al. (2013)
Arginine starvation DNA, NUP98 Prostate cancer cell death Changou et al. (2014)
DNase deficiency/DNA damage DNA Cancer/Inflammation Lan et al. (2014)
Oncogenic insult DNA, lamin B1, H3K27me3 Cell/tissue integrity/Tumorigenesis restriction Dou et al. (2015)
Keratinocyte differentiation DNA, HP1a Epidermal barrier function Akinduro et al. (2016)
DRPLA Lamin B1 Neuronal cell degeneration/death Baron et al. (2017)
HGPS/progerin DNA, progerin Nuclear integrity Lu and Djabali, (2018)
DNA damage DNA, lamin A/C Tumorigenesis restriction Li et al. (2019)

Nucleophagy-inducing signaling and respective cargo recognition by the autophagic machinery under the context of mammalian physiology and pathology. c-H2AX, serine-139
phosphorylated H2A histone family, member X; DNA, deoxyribonucleic acid; DNase, deoxyribonuclease; DRPLA, dentatorubral-pallidoluysian atrophy; H1, histone H1; H2B, histone H2B;
H3K27me3, tri-methylated lysine-27 histone H3; HGPS, Hutchinson-Gilford progeria syndrome; HP1α, heterochromatin protein 1α; NUP98, nucleoporin 98.
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Differentiation
Upon terminal differentiation, keratinocytes migrate to the
granular layer, lose organelles progressively and convert into
anucleate corneocytes. Epidermal terminal differentiation is
accompanied by activation of LC3, unc-51 like autophagy
activating kinase 1 (ULK1), tryptophan-aspartate (WD) repeat
domain, phosphoinositide interacting 1 (WIPI1), beclin 1
(BECN1) and ATG5-ATG12 expression in mouse fetal skin
and detection of epidermal autophagic vesicles in new-born
mouse epidermis (Akinduro et al., 2016). Interestingly, in
monolayer keratinocyte cultures, terminal differentiation is
accompanied by targeted autophagic degradation of nuclear
material positive for the histone interacting protein,
heterochromatin protein 1α (HP1α).

Ageing
Nuclear size, architecture and genome copy number of the cells
correlate with age and longevity. In certain premature-ageing
syndromes, the nuclei adopt abnormal phenotypes and genome
copy numbers (Tiku et al., 2017). Ribosomal RNA production
increases with age as well. Patients with Hutchinson-Gilford
progeria syndrome (HGPS), a rare genetic disorder
characterized by dramatic and rapid development of ageing
features in childhood, show expanded nucleoli, elevated global
protein synthesis levels and enhanced ribosome biogenesis
(Buchwalter and Hetzer, 2017). The above is caused by a
spontaneous point mutation in the LMNA gene (encoding
lamin A) leading to an aberrant splicing event (De Sandre-
Giovannoli et al., 2003; Eriksson et al., 2003). Such a mutation
generate a 50-amino acid in-frame deletion of prelamin A at its
C-terminus, resulting in a permanently farnesylated and
carboxymethylated protein termed progerin. Nuclear-localized
reporter peptides bearing the toxic prelamin A and progerin
C-terminal domains induce nucleophagic degradation
accompanied by chromatin degradation (Lu and Djabali,
2018). In parallel, the Sad1 and UNC84 domain containing 1
(SUN1) protein, a constituent of the linker of nucleoskeleton and
cytoskeleton (LINC) complex, delocalizes from the elongated
nuclear envelope-autophagosome complex formed. Therefore
SUN1 is excluded from nucleophagic degradation.
Interestingly, the mutant messenger RNA (and therefore the
mutant progerin protein expression) has been shown to be
efficiently targeted and eliminated by sterically blocking the
activated cryptic splice site using a morpholino oligonucleotide
(Scaffidi and Misteli, 2005). On the other hand, small nucleolus
size and decreased expression of ribosomal RNA, fibrillarin and
ribosomal proteins are cellular hallmarks of longevity and
metabolic health conserved across taxa (Yi et al., 2015;
Buchwalter and Hetzer, 2017; Tiku et al., 2017; Tiku and
Antebi, 2018). Age- or disease-related phenotypic changes of
the nucleus are delayed or attenuated in long-lived C. elegans
strains (Golden et al., 2007).

Senescent cells, damaged cells that permanently exit the cell
cycle, shed chromatin fragments into the cytoplasm. Such
cytoplasmic chromatin fragments (CCFs) are strongly positive
for histones H2 and H3 and negative for lamin A/C (Ivanov et al.,
2013). CCFs have been associated with lamin B1 down-regulation

and furthermore loss of nuclear envelope integrity. In addition,
CCFs are targeted by the autophagic machinery to lysosomes.
Increasing interest in CCF formation, function and elimination
advances our understanding of nuclear autophagic events but also
genome integrity and senescence-associated inflammation
(Miller et al., 2021). Therefore, the study of cytoplasmic DNA,
histone and nuclear lamina species can contribute to therapies
aiming to delay senescence and improve human health.

CONCLUSION AND PERSPECTIVES

Although research interest in nucleophagy is emerging, several
aspects of mammalian nucleophagy remain still elusive.
These include firstly, the morphological and spatiotemporal
membrane dynamics and secondly the molecular targeting and
mechanisms of selectivity of nucleophagy. Unlike the most of
the selective types of autophagy, nucleophagy must target
and process only a select portion of the organelle. Similar to
ER-phagy, macronucleophagy involves bulging of the nuclear
envelope and budding of the micronucleus. Among the ER-
resident proteins that have been shown to function as
selective receptors for ER-phagy, reticulophagy regulator 1
(RETREG1)/family with sequence similarity 134, member B
(FAM134B) which contains a reticulon homology domain
(RHD), conveys membrane-curvature induction and
curvature-mediated protein sorting required for ER-phagy
(Bhaskara et al., 2019). Atg39, the nuclear membrane resident
protein that functions as selective receptor for nucleophagy, does
not contain an RHD. It is possible that non-characterized
curvature inducing factors that localize to the ONM trigger
the initial bulging of the nuclear envelope and facilitate
micronuclei formation.

Extensive characterization of the nucleophagic content and
membrane composition will advance our understanding and
reveal the causal basis of nucleophagic events. It is not clear
whether nucleoplasm and nucleoplasmic or nucleolar proteins
are actual and selective targets of nucleophagy. It is possible that
their degradation is circumstantial or serves as a concomitant
low-level basal turnover mechanism. Interesting topics of
investigation include the nucleophagy regulatory mechanisms,
the identification of the participating receptors and therefore
the underlying coordination and substrate specificity in
health, disease and ageing. It is conceivable that sequestering
genetic or nuclear material and routing them for degradation
should obey delicate and strict regulation. If so, identification
of possible unique mechanisms, markers and receptors could
lead drug discovery to highly selective pharmacological
interventions towards the preservation of insulted nuclear
integrity.
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