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Supplementary Figure 1

Characterization of postmortem hippocampal samples and iPSC-derived neurons from AD patients and neurologically normal controls.

a, Quantification of Western blot data of the indicated proteins. Data were shown in mean + s.e.m. (n = 7 biologically independent
samples from 7 AD patients or 7 healthy controls; *p<0.05; Two-sided Student’s t-test). b, Levels of proteins related to mitochondrial
homeostasis in postmortem hippocampal samples from AD patients and age-matched controls. The right panel shows quantified data
between normal and AD groups. Experiments were repeated independently twice with similar results. ¢, Representative IHC images
showing colocalization of TOMMZ20 (mitochondrial outer membrane protein) and LAMP2 (lysosomal protein) in postmortem
hippocampal regions of AD patients and age-matched healthy controls (n = 3 samples/group). Experiments were repeated
independently twice with similar results. d, (upper) Levels of neuronal markers in two AD patient iPSC-derived neuronal lines and a sex-
and age-matched control. (lower) Western blotting showing levels of mitophagy-related proteins in a PSEN1 AD patient iPSC-derived
neuronal lines and matched control. Experiments were performed once. e and f, Levels of proteins involved in mitochondrial function
and dynamics, metabolism, DNA repair, and mitophagy in two AD patient iPSC-derived neuronal lines and a shared sex- and age-
matched control. g, Quantification of Western blot data of the indicated proteins. Data are shown in mean £ s.e.m. (n = 3 independent
experiments; n.s., p>0.05 and *p<0.05, **p<0.01, **p<0.001; One-way ANOVA). Experiments were performed three times. h, ATP
levels in postmortem hippocampal samples from AD patients and age-matched controls. Data are shown in meants.em. (n=7
biologically independent samples; ***p<0.001; Two-sided Student’s t-test). i, Quantification of autophagosomes and autolysosomes in
the APP and control cells with the ptfLC3 plasmid, with data shown in mean + s.e.m. (n = 20 neurons from 3 independent experiments;
**n<0.001; Two-sided Student’s t-test). Full scans of all the blots are in Supplementary Note.
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Supplementary Figure 2
Monitoring of neuronal mitophagy in vivo.

Transgenic nematodes expressing mtRosella biosensor in neuronal cells treated with NMN, UA, and AC. Decreased GFP/DsRed ratio
of mtRosella indicates neuronal mitophagy stimulation. DCT-1, PDR-1 and PINK1 were required for neuronal mitophagy induction in
response to UA, NMN and AC treatment. Scale bars, 20um. Quantitative data shown in Fig. 2d. Experiments were repeated
independently three times with similar results.
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Molecular mechanisms of mitophagy induction by UA and AC and defective mitophagy in the AB1.42 (CL2241) nematodes.

a, Effects of UA and AC on the protein levels of a list of mitophagy-related proteins. The human SH-SY5Y cells were treated with UA
(10-100 puM) and AC (10-100 uM) for 24 h, followed by detection of protein expression through western blotting. b, UA induces PINK1
expression in the APP/PS1 mice. The APP/PS1 mice were treated with UA (200 mg/kg/day) by daily gavage for 2 months starting from
6 months of age, and then the hippocampal tissues were subjected to western blotting analysis. ¢, Representative images showing
changes of neuronal mitophagy in ABi.s> (CL2241) nematodes under normal and oxidative stress conditions (paraquat/para. 8 mM). Co-
localization between the mitophagy receptor DCT-1 fused with GFP and the autophagosomal protein LGG-1 fused with DsRed depicts
mitophagy events. Scale bars, 2 ym. For (a), experiments were repeated independently twice with similar results. For (b), one repeat.

For (c), experiments were repeated independently twice with similar results. Full scans of all the blots are in Supplementary Note.
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Supplementary Figure 4

The optimized doses of NMN, UA, and AC do not induce general macro-autophagy in C. elegans.

a-b, Supplementation with NMN (5 mM), UA (0.1 mM), and AC (1 mM) does not alter general autophagy levels in C. elegans neurons.
Representative images showing transgenic nematodes expressing the autophagosomal marker LGG-1 fused with GFP (a) or DsRed
(b) (n =30 neuronal cells/group; ***p<0.001; one-way ANOVA followed by Sidak’s multiple comparisons test). Scale bars, 5 pm. c-h, C.
elegans transgenic animals expressing full-length pigg-1GFP::LGG-1, pigg-2GFP::LGG-2 and payg-1sATG-18::GFP fusion proteins indicative
of autophagic activity treated with NMN (5 mM), UA (0.1 mM), and AC (1 mM) (n = 30 nematodes/group; ***p<0.001; one-way ANOVA
followed by Sidak’s multiple comparisons test). Several tissues were evaluated, including intestines (c-d; Scale bars, 40 ym), embryos
(e; Scale bars, 10 ym), muscles (f; Scale bars, 20 uym), and neurons (g; Scale bars, 5 ym). Starvation-induced autophagy used as an
internal positive control. Error bars, £ s.e.m.
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Supplementary Figure 5

Mitophagy induction protects against memory impairment in C. elegans AD models.

We evaluated memory defects in the AD nematodes using an aversive olfactory learning paradigm. To determine whether memory
retention is dependent on mitophagy in the ABi.4> (CL2355) nematodes, we generated three mitophagy mutant strains,
pink1(tm1779);CL2355, pdr-1(gk488);CL2355, and dct-1(tm376);CL2355. a-c, NMN-, UA-, and AC-induced memory improvement
depends differentially on PINK1, PDR-1 and DCT-1 activity (n = 400 nematodes/group; n.s., p>0.05, ****p<0.0001; Two-way ANOVA
followed by Tukey's multiple comparisons test). d, Beneficial effects of NMN, UA, and AC on memory of AB1.42 expressing nematodes
(CL2355) differentially depend on mitophagy genes. For all experiments, nematodes were treated with NMN (5 mM) and AC (1 mM) for
2 generations, and with UA (0.1 mM) from eggs to the day of experiment for one generation. Adult Day 1 nematodes were used for the
memory assay. For all worm experiments, 2 to 4 independent experiments were performed. For all ‘dot-plot’ figures, center value
represents mean and error bars represent s.e.m.
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Supplementary Figure 6

Mitophagy induction improves mitochondrial homeostasis and mitochondrial function in APP/PS1 AD mice and APOE4/E4 iPSC-
derived neurons.

APP/PS1 AD mice were treated with UA (200 mg/kg/day) or AC (30 mg/kg/day) by daily gavage for 2 months starting at 6 months of
age, and subsequently tested in behavioral studies. Thereafter, mice were sacrificed for tissue collection. a, Representative EM images
of neuronal mitochondria (n = 3 mice/group). b, Summary of mitochondrial parameters and mitophagy events in hippocampus tissues
upon EM analysis. Data were shown in mean + s.e.m. (n = 3 mice/group; ***p<0.001 compared with WT (veh), **p<0.001 compared
with APP/PS1 (veh); One-way ANOVA). c-e, Measurement of mitophagy levels (c), mitochondrial content (d) and mitochondrial ROS
(e) in freshly isolated neurons from hippocampal tissues of treated and untreated animals. Center value represents mean and error bars
represent s.e.m. (n = 3 mice/group; *p<0.05, **p<0.01, and ***p<0.001; One-way ANOVA). f-h, Measurement of mitophagy (f),
mitochondrial content (g), and mitochondrial ROS (h) in isolated neurons from prefrontal cortex (PFC) tissues of treated and untreated
animals. Center value represents mean and error bars represent s.e.m. (n = 3 mice/group; *p<0.05, **p<0.01, and ***p<0.001; One-way
ANOVA). i, UA improves mitochondrial function in APOE/E4 iPSC-derived neurons. The APOE/E4 iPSC-derived neurons and WT
controls were treated with UA (50 uM) for 24 h, followed by the evaluation of OCR using a seahorse machine. Data were shown in
mean = s.e.m. (n = 6 technical repeats; One-way ANOVA with ***p<0.001). J-k, UA increases OCR in the AB;.42 (CL2355) nematodes.
Experiments for (j-k) were performed together with Fig. 2 e-f and, thus share the same data for the vehicle groups (n = 3 independent
experiments; **p<0.01, and ***p<0.001; One-way ANOVA). |, UA treatment reduced mitochondrial ROS levels in WT, AB1.42 (CL2355),
and Tau (BR5270) worms. UA (0.1 mM) was fed from L4 to adult day 3, followed by isolation of fresh mitochondria, stained with DFCA,
and the ROS signals were quantified through FACS. Data were shown in mean + s.e.m. (n = 3 independent experiments; ***p<0.001
compared with WT veh.; ##p<0.01 or ###p<0.001 compared with each own respective vehicle control; One-way ANOVA).
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Supplementary Figure 7

Mitophagy induction increases memory, diminishes soluble AB in PFC, and improves the quality of microglial mitochondria in the
APP/PS1 AD mice.

APP/PS1 AD mice were treated with UA (200 mg/kg/day) or AC (30 mg/kg/day) by daily gavage for 2 months starting from 6 months to
8 months, tested in behavioral assays, and then sacrificed for tissue collection. a, Representative images of the latency to a hidden
platform in the Morris water maze test (n = 13 mice in the WT veh. group, or 11 mice in all the other groups). b, There was no difference
in swimming speed between groups in Morris water maze test. Center value represents mean and error bars represent s.e.m. (n =13
mice in the WT veh. group, or 11 mice in all the other groups). ¢, Mitophagy stimulation improves spatial memory in the Y-Maze. Center
value represents mean and error bars represent s.e.m. (n = 13, 12, 14, 12 mice for each group). d, Quantification of GFAP using
histological tissues. Center value represents mean and error bars represent s.e.m. (n = 30, 30, 25, 11 sections, from 3 mice, for each
group). e-f, Analysis of soluble and insoluble AB1.42and ABi-40 levels in prefrontal cortex (PFC) tissues using an ELISA method. Center
value represents mean and error bars represent s.e.m. (n = 9 mice in the AD UA. group, or 8 mice in all the other groups; *p<0.05,
**n<0.01; One-way ANOVA). g, Quantification of Western blot data of the indicated proteins from 3 mice/group (associated with Fig.
4b). Data are shown in mean + s.e.m. (n.s., p>0.05 and *p<0.05, **p<0.01, ***p<0.001; One-way ANOVA). h, Protein levels of APP
intermediates in hippocampal samples in response to UA and AC supplementation (n = 3 in the veh. group and the UA group, n =4 in
the AC group). Quantification values are shown in mean + s.e.m. (**p<0.01 with p =0.029; One-way ANOVA). i, Representative EM
images of mitochondria in microglial cells (n = 3 mice/group). Error bars, + s.e.m. j, Quantification of a list of parameters related to
microglial phagocytosis, numbers and morphology (activation). Supplementation of UA and AC resulted in enhanced AB plaque
sequestration by microglia in hippocampus (n = 5 mice/group; ***p<0.001; One-way ANOVA). UA and AC treatment influences the
microglia population, the number of processes and the process length of microglia in hippocampus. Data are shown in mean + s.e.m.
(n=5 mice/group; ***p<0.001; One-way ANOVA). Full scans of all the blots are in Supplementary Note.
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Supplementary Figure 8

Bioinformatic analysis indicates that mitophagy induction improves neuronal function in APP/PS1 AD mice.

APP/PS1 AD mice were treated with UA (200 mg/kg/day) by daily gavage for 2 months starting from 6 months of age. Hippocampal
tissue was collected for microarray analysis. a, Effects of UA treatment on mRNA levels of designated neuron-specific genes. Right
side, neuronal functions of designated proteins. b, Changes of GO pathways among designated groups. n = 5, 6, 4 mice for AD (veh.),
AD (UA), and WT (veh.), respectively.
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Supplementary Figure 9

Rescue of learning and memory deficits by NMN, UA, and AC is dependent on mitophagy.

a, A summary of the effects of UA on pTau levels (associated to Fig. 5a). Conclusions were based on two independent experimental
repeats and with similar results. b-e, Using an aversive olfactory learning paradigm, we investigated whether memory retention is
dependent on mitophagy in the Tau (BR5270) nematodes. We generated three mitophagy mutant Tau strains, pink-
1(tm1779);BR5270, pdr-1(gk488);BR5270, and dct-1(tm376);BR5270. b-d, PINK1, PDR-1 and DCT-1 were differentially required to
mediate memory improvement in transgenic animals expressing Tau (BR5270) upon NMN, UA and AC supplementation. Center value
represents mean and error bars represent s.e.m. (n = 400 nematodes/group; n.s., p>0.05, ***p<0.0001; Two-way ANOVA followed by
Tukey's multiple comparisons test). For all experiments, nematodes were treated with NMN (5 mM) and AC (1 mM) for 2 generations,
or with UA (0.1 mM) from eggs to the day of experiment. Adult Day 1 nematodes were used for the memory assay. For all worm
experiments, 2 to 4 independent experiments were performed. e, Beneficial effects of NMN, UA, and AC on memory of Tau (BR5270)
nematodes depend differentially on mitophagy genes. Conclusions were based on two independent experimental repeats and with
similar results.
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Supplementary Figure 10

Effects of sex difference on mitophagy-induction-induced benefits in two AD mouse models.

a-b, The APP/PS1 mice were treated with UA (200 mg/kg/day) or AC (30 mg/kg/day) by daily gavage for 2 months
starting from 6 months of age, and then the AB1.4, and AB1.4 levels in the hippocampal region were detected using
standard ELISA techniques. Data shown in changes of hippocampal AB1.4> (2) or AB1.40 (b) levels in male and female mice.
For the mouse numbers in (a) and (b), n = 8 (4 males + 4 females) in WT (veh.), n = 8 (4 males + 4 females) in AD (veh.),
n =9 (5 males + 4 females) in AD (UA), and n = 8 (5 males + 3 females) in AD (AC). Center value represents mean and
error bars represent s.e.m. (*p<0.05, **p<0.01, **p<0.001; One-way ANOVA). Sex difference of the data shown in Figure
3f, g were reanalyzed here. c-f, effects of one-month UA treatment on memory performance in 3xTgAD mice. Thirteen-
month old 3xTgAD mice were treated with UA (200 mg/kg/day) by daily gavage for 1 month. To investigate any sex
difference, the data show in Figure 5i-l were further analyzed here. Contextual and cued fear conditioning test (c, d),
object recognition test (e), and Y-maze test (f) were performed. For the mouse numbers using in c-f, n =7 (5 males + 2
females) in WT (veh.), n =7 (3 males + 4 females) in 3XTgAD (veh.), n =7 (3 males + 4 females) in 3xXTgAD (UA). Center
value represents mean and error bars represent s.e.m. (*p<0.05, **p<0.01, ***p<0.001; Two-sided Student’s t-test was
used for the comparison between 2 groups, while One-way ANOVA was used to compare three groups.).
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Supplementary Figure 11
Working model.

Upper panel: The roles of mitophagy were evaluated in AD pathology utilizing postmortem human AD brain samples, AD iPSC-derived
neurons, and transgenic animal models of AD, including C. elegans and mice. Lower panel: We propose the synergistic roles and
relationships between AR, p-Tau, and defective mitophagy in AD progression. In the red panel: The underlying cause in most AD cases
is complex, likely reflecting risk associated with aging, multiple genetic factors as well as non-genetic (e.g., environmental,
lifestyle/behavioural and metabolic) factors. These factors can directly/indirectly cause mitophagy defects, leading to accumulation of
damaged mitochondria, a major feature in both familial and sporadic AD patients. Defective mitophagy, damaged mitochondria, and
Tau tangles/AB plaques, exacerbate one another (dashed arrow, further work necessary), causing neurodegeneration and impaired
phagocytosis by microglia, and the gradual development of AD pathology in brain. Evidence of Tau/AB-induced reduction of
mitochondrial motility were from (Ram D. et al., Science 2008; Tammineni P et a., Autophagy 2017). In the blue panel: Mitophagy
induction maintains a healthy mitochondrial pool through efficient clearance of dysfunctional organelles. Healthy mitochondria augment
neuronal function and survival as well as promote the clearance of extracellular AB plaques by microglia. Proficient mitophagy
maintains a healthy brain.
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Figure
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Table S1. Detailed information of human brain samples

Disease Gender Years in UMB# Post mortem
storage interval

Alzheimer Disease Female UMB4556

Control Female 70 13 UMB1490 23
Alzheimer Disease Male 78 15 UMB1252 9
Control Male 78 2 UMB5671 19
Alzheimer Disease Female 82 9 UMB4979 9
Control Female 83 10 UMBA4743 16
Alzheimer Disease Female 59 9 UMBA4833 19
Control Female 59 17 UMBM2884M 24
Alzheimer Disease Female 82 NA AN14331 17
Control Female 82 NA AN18592 24
Alzheimer Disease Male 78 NA AN14184 15
Control Male 77 NA AN12916 25
Alzheimer Disease Male 74 NA ANO08341 20.5
Control Male 74 NA AN10212 20.5

Samples were provided by the University of Maryland Brain Bank (UMB) or Harvard Brain Bank (AN) with MTA agreement.



Table S3. A summary of the cross-species model systems used in this study

AD human brain samples (N =7)

Control human brain samples (N =7)
Human brain

Sporadic AD (APOE4/E4) human iPSC-derived neuron

Familial AD (APP/V717L) human iPSC-derived neuron

Age- and sex-matched healthy control (SBAD03-01) human iPSC-derived
neuron

Familial AD (PSEN1) human iPSC-derived neuron

Cell line and iPSC-derived neuron 2N4R, 1N4R, and 2N3R-overexpressed SH-SYBY cells

APP/PS1 with their control mice

3xTgAD with their control mice

mouse

AB142 worm model (CL2355)

Tau worm model (BR5270)
pink-1(tm1779) , pdr-1(gk488) , dct-1(tm376)
pink-1(tm1779) ;CL2355, pdr-1(gk488) ;CL2355, dct-1(tm376) ;CL2355

pink-1(tm1779) ;BR5270, pdr-1(gk488) ;BRE270, dct-1(im376) ;BR5270

C. elegans and more information in Methods.
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