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Automated Motion Correction for In Vivo
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Abstract—In in vivo optical projection tomography (OPT),
object motion will significantly reduce the quality and reso-
lution of the reconstructed image. Based on the well-known
Helgason–Ludwig consistency condition (HLCC), we propose a
novel method for motion correction in OPT under parallel beam
illumination. The method estimates object motion from projection
data directly and does not require any other additional infor-
mation, which results in a straightforward implementation. We
decompose object movement into translation and rotation, and
discuss how to correct for both translation and general motion
simultaneously. Since finding the center of rotation accurately is
critical in OPT, we also point out that the system’s geometrical
offset can be considered as object translation and therefore also
calibrated through the translation estimation method. In order to
verify the algorithm effectiveness, both simulated and in vivo OPT
experiments are performed. Our results demonstrate that the
proposed approach is capable of decreasing movement artifacts
significantly thus providing high quality reconstructed images in
the presence of object motion.

Index Terms—Helgason–Ludwig consistency condition (HLCC),
motion correction, optical projection tomography (OPT).

I. INTRODUCTION

O PTICAL projection tomography (OPT) has emerged as
a powerful tool for 3-D reconstruction of specimens

with dimensions of 1–10 mm across [1]–[3]. It is the optical
equivalent of X-ray computed tomography (CT), and thus is
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also known as optical CT [4]–[7]. In the past few years, OPT
has been widely used for imaging small biological samples with
high resolution and sensitivity, such as murine embryos, zebra
fish embryos, nematode Caenorhabditis elegans, Drosophila
melanogaster, small animal organs, and plant sections [6]–[12].
Additionally, several groups have focused their research on
OPT in order to improve its resolution, reduce artifacts and
noise, and expand its application to live imaging and 4-D
imaging [13]–[26]. OPT is most commonly used with parallel
beam illumination, in which case the theoretical basis for OPT
reconstruction is the inverse Radon transform. This requires
the assumption that the specimen remains stationary during the
entire scan. However, the assumption is not always satisfied,
especially in in vivo OPT applications [27], [28]. Specimen
movement will introduce artifacts in the reconstructed image
and degrade spatial resolution considerably. Thus, it is neces-
sary to implement motion correction in in vivo OPT, and the
main reason that microscopic OPT is capable of delivering
high resolution images is the capability for motion error cor-
rection which becomes increasingly important and imperative
at microscopic scales. In a previous paper, we presented a set
of correction methods applied to calibrate object motion [29].
Tracking markers from fluorescent data were utilized to deter-
mine object motion. Since the methodology employed was not
automated in this previous work, we now focus our attention
on the development of automated methods. The objective of
the current work is therefore to study the more general case of
marker-free methods to estimate object motion automatically.
With regards to motion artifacts, a similar situation also

appears in fan beam and cone beam X-ray CT imaging,
where motion calibration methods have been widely studied
[30]–[33]. The well-known Helgason–Ludwig consistency
condition (HLCC) is a mathematical constraint on projection
data and reveals the redundancy of projection data [34]. It has
been utilized to reduce X-ray CT image artifacts and to estimate
unknown view angles [35], [36]. Based on this consistency
condition, Yu et al. proposed motion estimation methods for
fan-beam X-ray CT scanner [37], [38]. Using an equivalent
approach, we make use of the consistency condition to account
for specimen motion in parallel beam OPT.
In this paper, we describe an estimation method to calibrate

the motion of the specimen in parallel beam OPT. We demon-
strate the efficiency of the method both by simulated and in
vivo OPT experiments, in which we image the model organism
Caenorhabditis elegans. The paper is organized as follows. In
Section II, we describe our estimation method for parallel beam
OPT motion, and in Section III, we demonstrate the accuracy
of the method through both simulated and in vivo OPT data. In
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Fig. 1. Geometry of parallel beam projection.

Section IV, we present the results, finally including discussion
and conclusions in Section V.

II. METHODS

A. Parallel Beam Consistency Conditions

Considering the case of OPT with parallel beam illumination,
as shown in Fig. 1, let be a slice to be reconstructed,
which represents the density distribution of the light absorption
map of the sample. Let be the line integral of
along a certain line at a distance from the origin and at an angle
with the -axis. The relationship between and

can be defined by the well-known Radon transform as

(1)

where represents the Dirac delta function.
The relationship between and can also be de-

scribed by their geometry and -order moments. The geometry
moment of is expressed as

(2)

where and are nonnegative integers. The -order moment of
is

(3)

where is a nonnegative integer. Then the relationship between
(2) and (3) can be expressed by the Helgason Ludwig consis-
tency condition as follows:

(4)

The HLCC is important for parallel-beam CT, and is the the-
oretical basis on which we will work on to estimate the motion
parameters in OPT. The consistency condition can be found in
[34], and a full derivation of (4) is given in Appendix A.

B. Rigid Motion in Parallel Beam Geometry

In this paper, object motion in parallel beam OPT is as-
sumed to be rigid motion which decomposes into translation

and rotation components, where
with representing the virtual total scanning time. The unit
of is in seconds. Denoting as virtual total scanning time
indicates that differs from the actual total scanning time in
an OPT experiment. The relationship between and can be
expressed as , where is a positive scale coefficient.
There are two reasons to introduce the virtual total scanning
time . First, in many cases the accurate actual total scanning
time is unknown when processing the OPT data, unless
an accurate time-stamp is saved with each image. Second and
most important, a suitable choice of is of benefit to improve
the robustness of the motion estimation algorithm, which will
be shown in this subsection. At the same time, using a virtual
total scanning time to replace will not affect the motion
estimation results, proof of which will be shown in Appendix B.
At a certain time , the scanning angle is represented by

, where is the rotation angle
frequency. It should be stated that in this work we have only
considered rotation of the specimen along the axis of the OPT
rotation, which is usually the only allowed rotation axis since
typical specimens are constrained during the imaging process
(in the examples shown here the nematode is placed inside a
thin capillary, for example). One of the main effects of sample
rotation along the OPT axis is that the data will not have
evenly distributed projections, and possibly not even cover the
full 360 . If this is not accounted for and calibrated, it will
significantly degrade the quality of the filtered backprojection
(FBP) method.
Let us now assume that there is a point in the object,

which in the absence of motion should be projected to position
at angle . Due to object motion it will now be projected to a
new position as

(5)

By replacing in (3) by , we obtain

(6)

Through substitution of (6) into (4) we get the consistency
condition for object motion

(7)

For each there will be an independent equation to describe
the relationship between the projection data and the ob-
ject function .
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C. Translational Motion Estimation

First of all, let us assume that there exists translation motion
only, namely . In order to estimate translation motion
through the HLCC, let in (7) in which case we have

(8)

where , and

. In fact, if we consider as a density
function of an object, then is the total mass of the object
and is thus independent of the virtual scanning time , in which
case we denote as . Since represents the sum of
the light attenuation coefficient of the sample, we may safely
assume that is a positive value throughout the sample and
will equal zero only when there is no sample, in which case
sample motion is not relevant. Dividing both sides of the above
equation by yields

(9)

Now let us consider that and are smooth and con-
tinuous, which is a suitable assumption to describe motion in
OPT. In this case we can approximate and to an
-order polynomial as

(10)

It should be noted that in (10) we express the motion through
a polynomial function for simplicity. In fact, decomposition into
Bessel or Fourier components can also be used to approximate

and [37]. Considering and ,
we have , then

(11)

Assuming the OPT setup works in a rotate and shoot mode,
we may denote as the scan-
ning time, and acquire projections over the 360 cov-
erage. Substituting (11) into (9), and letting
and , we will have the following system equa-
tion in matrix form

(12)

where

(13)

(14)

In the above equations, is calculated from projection data,
while is the vector to be estimated. It is easy to prove that each
row of is independent. If the number of projections is larger
than the number of coefficients which need to be determined,
i.e., , a condition which is satisfied in most
practical cases, (12) will be an overdetermined equation. In this
case we can solve it through a least mean squares or a singular
value decomposition method.

D. Condition Number Analysis

It is well known that the condition number of matrix will
significantly affect numerical stability in solving (12), so we
will dedicate this subsection to the condition number of .
Denote the condition number of matrix by

, where and are the maximum and minimum sin-
gular values of matrix , respectively, and where
.
From (15), shown at the bottom of the page, we can see that
is a function of , where . Assuming that

we perform equal angle step scanning in OPT imaging, then
, where . Therefore, the choice of

will affect the condition number of matrix M. In order to show
the effect of on the matrix condition number, we plot the

with in Fig. 2 for the case and .
From this figure we can see that the value of affects the
condition number significantly, as expected. reaches
its minimum value at s and increases greatly when
grows or shrinks. It indicates that the suitable should be

chosen during translation estimation to enhance algorithm sta-
bility. It should be pointed out again that the choice of the virtual
total scanning time is not limited by the actual total scanning
time as we have mentioned above. We will give a detailed
proof in Appendix B.
In Table I, we list the minimum value and corre-

sponding for different order polynomials , with . It
is found that we have to choose the value for carefully, since

will quickly increase with , while at the same time
an accurate description of the object’s movement requires the
largest possible . In addition, during our study we find that

is insensitive to as long as
due to the independence of each row of matrix .

...
...

. . .
...

...
...

. . .
...

(15)



ZHU et al.: AUTOMATED MOTION CORRECTION FOR In Vivo OPTICAL PROJECTION TOMOGRAPHY 1361

Fig. 2. Behavior of the Condition Number of with respect to the virtual total
scanning time .

TABLE I
MINIMUM AND CORRESPONDING VIRTUAL TOTAL SCANNING

TIME VALUES FOR DIFFERENT ORDER POLYNOMIALS

E. Physical Meaning of the Translation Estimation Method

Once we have defined the equations which may account for
object movement, we shall now resort to explaining the physical
meaning of these equations. By defining
and , (9) becomes

(16)

As mentioned above, is related to the total density of the
object and hence is equivalent to its total mass. In this case,

denotes the mass center of the projection at time , the
point representing the mass center of the object,

, at time . Considering the motion of the object to
be described by and , in this case the mass center of

will be located at at time . That is to say,
represents the motion trajectory of the object. In

light of the above, the meaning of (16) is now clear: it builds a
relationship between the mass center of the object and the mass
center of its projection, as schematically represented in Fig. 3.
If there is no object motion, the projection of the object’s center
of mass on the detector will form a perfect sinogram. In the case
where somemovement of the object exists, the perfect sinogram
will be altered: this deviation from the perfect sinogram contains
the motion information of the object.

F. Calibration of Axis of Rotation Offset

Accurate determination of the axis of rotation is crucial for
high resolution OPT. In an ideal case, the projection of the ro-
tation axis will fall on the central row of the detector plane in a
parallel beam OPT system. If there is an offset value from
the true axis of rotation during scanning and it is not accounted
for during reconstruction, the resulting reconstruction will be
correspondingly blurred. By using the translation equations pre-
sented in the previous subsections, we may convert this geom-
etry offset into an object translation which can be then estimated

Fig. 3. Physical Meaning of the translation estimation method. Assuming a
rigid object, its translation can be considered as the translation of its mass center.
Accordingly, the mass center of the projection data will move on the detector
plane following the translation of the object’s mass center.

through the HLCC-based translation estimation method. This
means that the presented method is able to estimate not only the
object translation motion, but also the offset from the true axis
of rotation simultaneously.

G. General Motion Estimation

In all the above description we so far neglected the object
rotation. We shall now discuss the case when both translation
and rotation motion take place simultaneously, in which case the
complexity of the problem clearly increases due to the coupling
between the unknown parameters of translation and rotation.
Due to this reason, it is impossible to estimate both translation
and rotation parameters through the first-order HLCC, and we
need to resort to the second-order HLCC to estimate the general
motion, which now includes both translation and rotation.
Let in (4), we have

(17)

where . Similarly to the translation case,
we approximate by a finite order polynomial as

(18)

During our motion estimation, the data we can use are the
projection data of each angle. So should be calculated
by the following equation which is derived from (6):

(19)

It is easy to prove that through the
symmetry of the cosine and sine functions in (17). Thus, we can
construct the following cost function:

(20)

where and . It
should be noted that the value in the above equation is
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calculated through (19), and the value is calculated
through linear interpolation of and , being

and such that . Be-
cause of the existence of the specimen translation and rotation,
the above and will cancel out only when
the motion values are compensated accurately in (19). That is to
say, when the estimated translation and rotation values are equal
to the actual motion values, the cost function will reach its
minimum value. Since the translation and rotation parameters
are coupled together, a search strategy is used to estimate trans-
lation and rotation alternatively. Herein, we give an example of
the general motion estimation pseudo-code for .

1) Given search range and search step for
, and and step for .

2) For to with step .
3) For to with step .
4) Calculate by (18), and .
5) Estimate translation and by (12).
6) Calculate the cost function for each pair and

.
7) End For .
8) End for .
9) Find and for the minimum cost function .
10) Determine and by (12) for the above

and .

In line 1, the search range and step are input values. In lines
2 to 8, we search the best and in 2-D space. It is clear
that if we express by a three-order polynomial function,
we have to perform a 3-D search which will increase the com-
putation burden significantly. An effective method to decrease
computation time is to specify a large search range and large
step as a first attempt to coarsely determine and , and
then decrease the search range and perform a finer search in the
small search space, in order to obtain a more accurate and
. The determination of the search ranges of and is

crucial for motion estimation. In most cases of OPT scanning,
the rotation value should not be very large, 30 at most
for example. We can initialize both and
to , and then perform the above optimization with a
large step. If there exists a local minimum of in the search
space, we will decrease the search range and perform a finer
search in the small search space. If the local minimum falls on
the edge of the search space, we will reset the search range in
order to place the minimum found in the center of the search
space and perform the optimization once again. In the results
presented in this work we made use of the force-search method
for the motion estimation, but of course other methods can be
used to reach the global optimum solution [39].

III. EXPERIMENTS

To demonstrate our algorithms for motion correction, we per-
formed two sets of experiments: the first set of experiments was
designed in such a way as to correct translation motion, axis of
rotation or geometry offset and rotation motion with simulated
data. The second set aimed at understanding how the proposed
algorithm could be applied to parallel beam OPT imaging. For

Fig. 4. Modified Shepp–Logan phantom.

TABLE II
TRANSLATION AND ROTATION FUNCTION IN NUMERICAL SIMULATIONS

all of the experiments we set for translation estimation
and for rotation estimation.

A. Numerical Simulations

In order to demonstrate the feasibility of the proposed
algorithm, we performed numerical tests using a modified
Shepp–Logan head phantom. Some high contrast points of
small size were added to the phantom to further enhance the
motion effect, as shown in Fig. 4.
During the experiments, simulated projection data were gen-

erated through an analytical line integral, adding 0.1% Gaussian
noise so as to verify the robustness of our methods.We supposed
that there were 512 detector cells on an equal-spaced detector
and 360 projection images were acquired over the full-scan of
360 , i.e., one for every degree. For image reconstruction we
made use of a classical FBP method with a Ram–Lak filter [40]
where each reconstructed image consisted of 512 512 pixels.
It should be noted that since all the simulations were performed
in a parallel beam geometry as pertains to current OPT setups,
we simply set the pixel size as detector cell size without the
need to give the physical dimensions of the pixels. Due to this
fact, translation motion is described in pixels in the following
experiments.
1) Translation Simulation: Two types of translation motions

were simulated in our experiments as shown in Table II, and
the corresponding experiments 1 and 2, are listed in Table III.
Translation 1 simulated a polynomial curve, while translation
2 simulated a sinusoidal curve motion. The motion magnitudes
are represented in blue in Fig. 5(a) and (c). The equivalent mo-
tion on the detector, , is shown in blue in
Fig. 5(b) and (d).
2) Geometry Offset Simulation: In order to demonstrate the

geometry offset calibration ability of our algorithm, we set a
detector cells (pixels in our case) geometry offset in one



ZHU et al.: AUTOMATED MOTION CORRECTION FOR In Vivo OPTICAL PROJECTION TOMOGRAPHY 1363

Fig. 5. Translation curves and estimated curves. Images (a) and (b) corresponds
to Translation 1 in Table II, and (c) and (d) corresponds to Translation 2.

Fig. 6. Estimated curves by translation motion estimation (first column) and
general motion estimation (second column).

TABLE III
LIST OF SIMULATION EXPERIMENTS

TABLE IV
QUANTITATIVE EVALUATION OF TRANSLATION ESTIMATION RESULTS

Fig. 7. Projection image ofC. elegans. The dashed red line denotes the rotation
axis position.

of the simulation experiments, which we also combined with
translation 1 to verify our algorithm. These two experiments
correspond to experiments 3 and 4 in Table III.
3) General Motion Simulation: The rotation function

is shown in Table II for which two experiments, termed experi-
ment 5 and 6 in Table III, were simulated. In experiment 5, we
combined translation (translation 1) and rotation together. In ex-
periment 6 we combined translation (translation 1), rotation and
the cells geometry offset together.

B. OPT Imaging

In order to verify the approach with real data, we acquired
in vivo data from C. elegans using a prototype OPT system
developed in-house, which has been thoroughly described
elsewhere [12], [27], [29]. For the experiment the C. ele-
gans was introduced inside a capillary which was placed in
a custom-built bath filled with glycerol as an index-matching
fluid. A thermoelectrically cooled, electron multiplying CCD
with 1002 1004 pixels (Ixon DV885, Andor Technology,
Belfast, U.K.) was used to acquire projection images through a

objective lens. 500 projections over 360 were acquired
in trans-illumination mode. Therefore, in the in vivo
experiment. We show one such projection image in Fig. 7.
As was previously mentioned, due to the experimental setup

and the fact that the measurements are performed in vivo, usu-
ally data have significant movement present. The data set we
present has been specifically selected since it not only contains
movement of the live specimen but also additional geometrical
movement of the capillary (note that this movement was not in-
tentional and is due to the capillary not being properly attached
to the rotation stage). Hence, this specific data set is perfect to
test the translation and general motion calibration algorithm.
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Raw data preprocessing was indispensable before motion cal-
ibration and image reconstruction in order to apply the FBP al-
gorithm. Assuming represents the projection captured at
angle is the reference image of the system (i.e., constant
illumination with no sample), and is the background mea-
surement acquired by the CCD camera when all light sources
are switched off, then according to Beer’s law, the sum of atten-
uation coefficients, , are

(21)

The above operation was implemented on the projection
image pixel by pixel, and the angular sequence of each row
of formed a sinogram, which corresponds to the angular
sequence of as described in (1). During translation esti-
mation, the parameter is chosen by minimizing the condition
number of the system matrix , and s in the in vivo
OPT experiment.

C. Quantitative Evaluation

In order to quantitatively evaluate the motion estimation re-
sults, the mean translation excursion (MTE) and the mean rota-
tion excursion (MRE) are defined as follows [38]:

(22)

(23)

where , and .
is the total scanning time, and is set to 1 s in all the simulation
experiments. Let and denote the estimated values of
the translation and rotation functions, respectively, then the rel-
ative mean translation excursion (rMTE) and the relative mean
rotation excursion (rMRE) are defined as [38]

(24)

(25)

It is clear that the above metrics are just suitable to eval-
uate the motion estimation results of simulation experiments in
which the object motion is known beforehand. In a real experi-
mental situation the object motion is unknown, thus other eval-
uating indicators should be introduced. Image assessment has
been studied by many researchers [41], [42]. Objective met-
rics of image assessment can be divided into three categories:
full-reference, reduced-reference, and no-reference [42]. In the
former two cases, full or partial information about the original
image should be available. In the last case, the metric is a com-
puted absolute value based on some characteristics of the given
image, not relative to a reference image. There is no doubt that
a no-reference metric should be adopted in our study.
The assessment of the motion correction results is similar to

the autofocusing problem in computer microscopy in which the
best image is chosen directly from the acquired images by a

computer without any reference images [43], [44]. In [44], Sun
et al. have tested and compared eighteen widely used focus al-
gorithms and pointed out that the normalized variance method
provided the best overall performance. Therefore, the normal-
ized variance is utilized herein to evaluate the motion correction
results in our study. The normalized variance is defined as

(26)

where is the reconstructed image of size, and
denotes the mean value of .
It should be noted that some researchers also use image vari-

ance to assess the quality of the reconstructed images [14], [29].
By normalizing the final output with the mean intensity, the nor-
malized variance method can compensate for the differences in
average image intensity among different images [44].

IV. RESULTS

A. Simulation Results

Fig. 5 shows the estimated curve through the translation esti-
mation method. The first and second rows correspond to exper-
iments 1 and 2, respectively. In Fig. 8, column 1 and 2 present
the reconstructed results without and with translation calibra-
tion, respectively. Rows 1 to 4 correspond to experiments 1 to 4
in Table III. The results demonstrate that if there is only trans-
lation motion or/and geometry offset, the translation correction
method is enough to implementmotion calibration. Even though
experiment 2 displays some bias of the and estimation, the
equivalent motion on detector, , is found
with good accuracy yielding an improved calibrated image.
For the general motion which combines both translation and

rotation, performing translation correction on its own is not suf-
ficient, in which case we need to resort to using the general mo-
tion correction method. The first and second columns of Fig. 6
show the estimated curve through translation and general mo-
tion estimation, respectively. Rows 1 to 3 of Fig. 9 show recon-
structed results without correction, with translation correction
and with general motion correction, respectively. The first and
second columns correspond to the results of experiments 5 and
6, respectively.
Quantitative evaluation of the motion estimation has been

done byMTE,MRE, rMTE, and rMRE in this paper. For experi-
ments 3, 4, and 6, there are geometry offsets during simulations,
which will be equivalent to a translation motion during motion
estimation, and cannot be distinguished from a real translation
of the object. Therefore, the motion estimation results cannot
be quantitatively evaluated using the above metrics. In the fol-
lowing, only the evaluation results of experiments 1, 2, and 5
will be shown.
The quantitative results of experiments 1 and 2 are listed in

Table IV. The rMTE of experiments 1 and 2 are 1.88% and
3.95%, respectively. Polynomial fitting has been used to ap-
proximate the motion translation curve in both experiments 1
and 2. The translation function in experiment 1 is following a
polynomial, while in experiment 2 the object is moving along a
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Fig. 8. Reconstructed results without (first column) andwith translation correc-
tion (second column). Row 1 to 4 corresponds to experiments 1 to 4 in Table III.
The display window is .

sinusoidal curve. As a result, the rMTE in experiment 2 is larger
than in experiment 1.
Table V lists the general motion estimation results of experi-

ment 5, which compares the results of the translation estimation
method and that of the general motion estimation method. In the
general motion case, the rMTE and rMRE of the general mo-
tion estimation method are 4.63% and 0.88%, respectively. The
rMTE of the translation estimation method is 13.73%, which is
obviously larger than the general motion estimation method.
The motion correction results of all the simulation experi-

ments have been evaluated by the normalized variance method.

Fig. 9. Reconstructed results without correction (first row), with translation
correction (second row) and with general motion correction (third row). The
first column corresponds to experiment 5, and the second column corresponds
to experiment 6 of Table III. The display window is .

TABLE V
QUANTITATIVE EVALUATION OF GENERAL MOTION ESTIMATION

RESULTS IN EXPERIMENT 5

Table VI lists the assessment results of experiments 1 to 4, which
shows that the normalized variance value nVar increases signif-
icantly after motion correction. Corresponding results for ex-
periments 5 and 6 are shown in Table VII. Both translation and
rotation exist in these two experiments. Translation correction
can partially increase nVar, and the general motion correction
can further improve the correction results. These quantitative
evaluation results agree with the results presented in Fig. 9.
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TABLE VI
QUANTITATIVE EVALUATION OF TRANSLATION CORRECTION

BY NORMALIZED VARIANCE

TABLE VII
QUANTITATIVE EVALUATION OF GENERAL MOTION

CORRECTION BY NORMALIZED VARIANCE

Fig. 10. Estimated translation curve through translation estimation method of
C. elegans data.

Fig. 11. Estimated rotation curve through general motion estimation method
of C. elegans data.

B. OPT Imaging Results

Fig. 10 shows the estimated movement curves and
of C. elegans data through the translation estimation method.
Figs. 11 and 12 give the estimated rotation and translation
curves through the general motion estimation method. In these
three figures the normalized time is adopted to describe the
object motion during scanning.

Fig. 12. Estimated translation curve through general motion estimationmethod
of the C. elegans data.

Once the movement parameters were obtained, the object
could be reconstructed via FBP algorithm with movement com-
pensation. Fig. 13 shows the reconstructed images, where the
top two rows correspond to the 720th slice and the 480th slice
with positions as indicated by the red and yellow lines in the
longitudinal views. Fig. 13(a) corresponds to the reconstructed
image without motion calibration. Note that the motion arti-
facts are easily seen in these views, especially in the transaxial
view. Fig. 13(b) depicts the reconstructed results by compen-
sating translation movement shown in Fig. 10. Compared with
(a), we can see that the motion artifacts are strongly reduced
when using the translation motion correction. Fig. 13(c) shows
the reconstructed results calibrated by general motion parame-
ters shown in Figs. 11 and 12. Fig. 13(b) and (c) are very similar,
which leads us to conclude that during the OPT imaging session
of C. elegans, there was significant specimen translation move-
ment which greatly affected the reconstructed results, whereas
there was no appreciable rotation of the specimen.
In order to compare the spatial resolution of the reconstructed

images, a high contrast region of interest (ROI) has been chosen
for analysis. As indicated by the blue rectangles shown in the
top two rows of Fig. 13, each thin rectangle represents a 30 10
ROI in the 480th and 720th slices of the reconstructed images re-
spectively. The columns of each ROI were averaged and plotted
in Fig. 14. The averaged profiles across the capillary wall of the
720th slices, corresponding to the first row images in Fig. 13,
are shown in Fig. 14(a), and Fig. 14(b) corresponds to the 480th
slices results. As shown in these figures, the capillary wall was
separated into two low peaks before motion correction, and re-
stored to one high peak after motion correction, implying that
a significant improvement of spatial resolution was obtained by
motion correction. In addition, it can be seen that the results of
translation and general motion correction are nearly the same.
A further quantitative evaluation of the motion correction re-

sults is given by the normalized variance method. The normal-
ized variance values were calculated for each slice of the recon-
structed images without motion correction, the reconstructed
images with translation correction and the reconstructed images
with general motion correction, respectively. The results are
shown in Fig. 15. Fig. 15(a) and (c) shows the mean value and
normalized variance of each slice respectively, and Fig. 15(b)
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Fig. 13. 3-D reconstruction results from C. elegans in vivo. (a) Without motion correction. (b) With translation correction. (c) With general motion correction.
The top two rows correspond to the 720th slices and the 480th slices which are indicated by the red and yellow lines in the longitudinal views.

gives a longitudinal view of C. elegans to present the corre-
sponding position of each slice. Fig. 15(c) demonstrates that
the normalized variance values of the motion correction im-
ages, both translation correction and general motion correction,
are much higher than the images without motion correction, im-
plying a significant improvement of the image quality after mo-

tion correction. Meanwhile, the normalized variance values of
translation correction and general motion correction are nearly
the same, which can also be seen from the coincidence of the
blue and the red lines in Fig. 14. The normalized variance values
fluctuate according to the slices, and increase towards the right
hand side (anterior part) of specimen due to a decrease of the
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Fig. 14. Averaged profiles across the capillary wall at positions indicated by
the blue ROIs shown in Fig. 13. Images (a) and (b) correspond to the first and
second row of Fig. 13 respectively.

diameter of the specimens, i.e., a decrease of the mean value of
the slices, as is shown in Fig. 15(b).
It is clear from the above analysis that image resolution is

improved significantly after motion correction. Moreover, there
is no obvious difference between the translation correction and
general motion correction results. The general motion estima-
tion is implemented by a search strategy, which will take a
longer time than the translation estimation. In the case of in vivo
OPT imaging, it seems that the general motion estimation is not
warranted since the translation correction has already obtained
very good results. However, in the simulation experiments the
effect of general motion correction is readily observed. A pos-
sible reason can be that the C. elegans is very close to the rota-
tion axis during scanning, as is shown in Fig. 7 clearly, in which
the dashed red line denotes the rotation axis in OPT imaging. It
is well known that the smaller the turning radius, the fewer mo-
tion artifacts the rotation makes. In this case, the rotation effect
on C. elegans imaging, if any, should be very small.

V. DISCUSSION AND CONCLUSION

In this paper we proposed a novel approach for parallel beam
OPTmotion calibration based on the consistency condition. The
approach can estimate the object movement from projection
data directly and does not need any other auxiliary information.
If the rotation movement is negligible, solving a linear equa-
tion is enough to acquire the translation movement information.
We have discussed the condition number of the equation and

Fig. 15. Quantitative evaluation of the motion correction results by the nor-
malized variance method. (a) Mean value of each slice. (b) Longitudinal view
of the C. elegans. (c) Normalized variance value of each slice.

pointed out how to obtain a small condition number during the
solution of the equation. If both the rotational and translational
movements are present simultaneously, a search strategy is then
used to estimate translation and rotation alternatively. In addi-
tion, we have shown that the offset of the axis of rotation of the
system can be equivalent to object movement and can thus be
corrected by our translation estimation method. Therefore, our
approach is able to calibrate general motion, including transla-
tion and rotation, and the axis of rotation offset of the system si-
multaneously. Due to the relativity of object movement and me-
chanical movement, our approach is also capable of removing
artifacts due to mechanical instability at the same time.
A numerical evaluation of our algorithm is presented using

computer-simulated OPT data. The results demonstrate the ef-
ficiency of our approach, which has also been verified using in
vivo OPT data from C. elegans. The in vivo results showed a
significant decrease in the number of artifacts due to movement
when our approach was applied.
Theoretically speaking, there is no size limitation of the ge-

ometry offset corrected by our method. However, making mo-
tion correction with a very large offset value is not encouraged,
since during geometry offset correction the offset value can be
equivalently estimated to object translation. Since the transla-
tion motion estimated by our method contains two parts, a real
object translation and an equivalent translation by the geometry
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offset, if the geometry offset is very large compared to the ob-
ject translation, the proportion of the real object translation in
the estimated value will be very small. In this case, a small esti-
mation error will result in a relatively large bias in the real object
translation. In fact, a coarse estimation of the geometry offset is
very easy. Therefore, we can first estimate the geometry offset
coarsely by other methods, using the sinograms for example.
Afterwards an accurate estimation of the geometry offset and the
object translation can be done simultaneously by our method.
In our method, we approximate both translation and rotation

through polynomial expressions, in which case the choice of the
order of the polynomials and is very relevant. A smaller
or will result in less accurate estimation, while a larger

one is also not encouraged since, as is shown in Table I, the
higher the value of the larger the condition number of matrix
, which will result in instability of the translation algorithm.

It should be noted that a higher will not increase computa-
tional cost significantly. However, a higher results in a larger
dimension of search space, which will increase the computation
demand greatly.
The search time for general motion estimation is related to the

search range and to the search step. For example, if using a two-
order polynomial expression to fit the rotation, and the search
ranges of and and are set to with a search step
of 0.1, it takes about 560 ss with an Intel Xeon dual-core CPU
W3505@2.53 GHz and 6 GB DDR2 memory. All the search
codes have been implemented using Matlab R2010b. A multi-
level search strategy can be used to reduce the computation time,
which means a coarse search with a large range and large step is
performed first to find a preliminary value of and , then
a refined search around the preliminary value with small step is
adopted for an accurate estimation.
One point which needs attention is that a very large number of

projections will not increase the search time significantly. This
is due to the object motion being estimated by polynomial fit-
ting, which just needs to obtain the finite order polynomial coef-
ficients and does not need to consider each separate projection.
More projection images mean more data can be used for poly-
nomial fitting, but will not lead to a dramatic computation in-
crease. Therefore, our method can be utilized to deal with large
time-lapse scan sets without added complexity.
Because our method utilizes the symmetry for rotation esti-

mation as shown in (20), a full 360 scanning is recommended.
When the scanning range is between 180 and 360 , in which
case only a few projection data satisfy symmetry, the rotation es-
timation method could cease to be effective. For full 360 mea-
surements, the actual rotation range will be less than or more
than 360 due to specimen rotational movement. Assuming the
rotation of the specimen is less than 30 , this will not affect the
rotation estimation method since there will still be enough pro-
jections to satisfy symmetry.
In this paper, our attention was focused on parallel beam

OPT only. For fan beam or cone beam OPT motion estima-
tion, we suggest the work on fan beam X-ray CT motion cal-
ibration [37], [38]. It should be noted that there are some limita-
tions to our approach: firstly, projection truncation is not allow-
able, a restriction which results from the consistency condition.
Secondly, our approach is currently valid for trans-illumination

OPT imaging, and is not suitable for fluorescence imaging. This
is because in fluorescence mode there is no reference image as
is in trans-illumination mode, since the fluorescence from a cer-
tain section might be visible from one side of the specimen and
barely visible from the opposite side due to different absorp-
tion and/or scattering properties. Added to this is the fact that
the movement of the specimen in and out of the focal plane
while measuring all OPT projections has a very strong effect on
our motion calibration method. Note, however, that this issue
can be corrected for by increasing the depth of field of the ob-
jective. What we suggest is to measure simultaneously, or at
least sequentially, excitation and emission data in order to accu-
rately and automatically account for specimen movement both
in fluorescence and trans-illumination OPT since in this case
it would be safe to assume that specimen movement is equiv-
alent in both modes. The limitations that the motion calibra-
tion presents in fluorescence data might also be overcome by
introducing the attenuation compensation in fluorescence OPT
as done in [4], [45], and thus account for the heterogeneity
of the sample. We believe that our motion calibration method
combined with the attenuation compensation of fluorescence
OPT data will significantly improve resolution, quantitation and
quality in general of in vivo OPT data. Thirdly, in this paper
just the object motion in-plane was studied, neglecting the lon-
gitudinal motion. In order to estimate the longitudinal motion,
there are two feasible strategies. The first strategy is suitable
for the case where there are some high contrast points on the
object which can be used as tracking markers, and the longitu-
dinal motion information can be extracted from these markers in
multiple projection images [29]. The second strategy is a more
general method, which is suitable for the case where high con-
trast structured object features are missing and have to estimate
the z-direction motion from common projections. For example,
Pauchard et al. proposed a method to determine longitudinal
translations by tracking profiles of the object among projections
[46]. Combining such strategies with our in-plane motion esti-
mation method, the 3-D motion of OPT imaging can be cor-
rected, which is the focus of future studies.

APPENDIX A
DERIVATION OF THE CONSISTENCY CONDITION

Substituting (1) into (3), we then have

(A1)
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where . Substituting (2) into the above

equation, the HLCC can be expressed as

(A2)

APPENDIX B
EFFECT OF THE TOTAL VIRTUAL SCANNING TIME

ON MOTION CORRECTION

In this appendix, we shall prove that replacing the actual total
scanning time with the virtual total scanning time will not
affect the motion estimation results.
For simplification, only a translation of the object in direc-

tion during the OPT experiment is taken into consideration. The
proof is the same for the cases of translation in direction and
rotation.
The actual translation along the axis can be expressed as

(B1)

where . During the whole experiment, projec-
tions with a uniform scanning interval are acquired. In this case
the time to acquire the th projection is , where

. For an OPT projection set, if the motion distance
for each projection is already known, the motion cor-

rection can be implemented exactly. The motion distance cor-
responding to the th projection can be expressed as

(B2)

Assuming that the whole experiment is finished in the virtual
total scanning time , the relationship between and is

, where is a positive scale coefficient. Correspondingly,
, and the virtual scanning time to acquire the

th projection is .
Substituting by in (B1), the motion distance for the

virtual scanning time can be expressed as

(B3)

Therefore, the motion distance corresponding to the th pro-
jection can be expressed as

(B4)

Comparing (B2) and (B4), it can be clearly seen that
, which means the choice of will not affect the descrip-

tion of themotion distance for a certain projection, and therefore
replacing with will not affect the motion correction results.
Let in (B3), where , then

(B5)

This has the same form as in (11).
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