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Multisensory integration is a mechanism that allows organisms to simul-

taneously sense and understand external stimuli from different modalities.

These distinct signals are transduced into neuronal signals that converge

into decision-making neuronal entities. Such decision-making centres

receive information through neuromodulators regarding the organism’s

physiological state and accordingly trigger behavioural responses. Despite

the importance of multisensory integration for efficient functioning of the

nervous system, and also the implication of dysfunctional multisensory inte-

gration in the aetiology of neuropsychiatric disease, little is known about the

relative molecular mechanisms. Caenorhabditis elegans is an appropriate

model system to study such mechanisms and elucidate the molecular

ways through which organisms understand external environments in an

accurate and coherent fashion.
1. Introduction
Organisms must sense and ‘understand’ external stimuli in order to adapt to

continuously changing natural conditions. Adaptability is largely dependent

on the ability of the nervous system to receive and integrate information regard-

ing physical parameters, such as temperature and humidity, food availability,

presence of predators and sex pheromones, so that it can orchestrate proper

physiological and behavioural responses to ensure survival and reproduction.

Diversity of physical and biological factors that affect organisms has led to

the evolution of several neuronal circuits that accomplish perception of various

sensory modalities, such as temperature, vision, taste, smell, touch and hearing.

Sensory neurons receive external information that is processed and integrated

to regulate behaviour and form memories. Each environmental stimulus can

trigger multiple sensory neurons and generate various sensory cues, which

must be integrated and assessed by the nervous system. Nevertheless, the

stimuli that an organism must perceive and process in order to better confront

natural challenges can be highly complex, and simultaneous perception of

different stimuli is necessary for the construction of a comprehensible depiction

of habitats and a fully featured understanding of natural conditions.

Often organisms must choose between opposing sensory signals in nature.

An organism with enhanced food-searching activity or copulating behaviour is

under an increased risk to become prey of its predators or face adverse physical

microenvironments that can kill it. To make the best decision for its survival and

efficient reproduction, an organism must receive as much information as poss-

ible regarding the relative degree of danger through its sensory neurons.

Subsequently, this heterogeneous information must be integrated and processed

into decision-making neuronal centres to regulate relative responses [1]. Such

decision-making centres must consider the organism’s physiological status,

e.g. the level of hunger or food shortage, to judge if the enhanced risk for survival

is necessary and accordingly regulate the behavioural response [2,3]. This

presupposes the capacity of decision-making centres to sense organism’s

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.180049&domain=pdf&date_stamp=2018-06-20
mailto:tavernarakis@imbb.forth.gr
http://orcid.org/
http://orcid.org/0000-0002-5253-1466
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rsob.royalsocietypublishing.org
Open

Biol.8:180049

2
physiological state and initiate behavioural responses through

modulation of executive neurons. Hence, decision-making

neurons can serve not only as sensors of external and internal

stimuli, but also as behavioural modifiers.

Several studies suggest the existence of decision-making

centres that accomplish responses to multisensory cues in all

animals tested so far. In Drosophila melanogaster, visual and

chemosensory inputs converge into the mushroom bodies

to potentiate plasticity in courtship [4]. In primates, cerebral

cortex integrates and assesses information from sensory

inputs to modulate behavioural responses [5]. The above and

several more studies suggest the existence of defined neuronal

domains that integrate multisensory information and serve as

decision-making centres. Whether multisensory convergence

occurs within particular brain regions (areal convergence) or

within specific neurons (neuronal convergence) is unknown

[1]. Instead, other studies suggest the existence of multiple

multisensory integration centres in higher organisms [6,7].

To date, the enormous complexity of the nervous system in

higher animals makes functional mapping of the brain

impossible and the elucidation of mechanisms governing

multisensory processing a difficult task.

Recent research on multisensory integration has focused

on Caenorhabditis elegans, a well-studied nematode with a

simple nervous system, comprising only 302 neurons. With

6393 chemical synapses, 890 gap junctions and 1410 neuro-

muscular junctions detected and its synaptic wiring fully

reconstructed [8–11], research on C. elegans enables the

functional and molecular characterization of single neurons.

Moreover, a large arsenal of molecular tools facilitates genetic

and behavioural manipulations and analysis. Furthermore,

novel techniques, such as calcium imaging, can directly link

activation of individual neurons to specific sensory stimuli

[12–15]. Hence, C. elegans is a proper animal model to dissect

mechanisms regulating multisensory integration in complex

organisms such as humans.
2. Multisensory perception in
Caenorhabditis elegans

2.1. Sensory neurons in Caenorhabditis elegans
Caenorhabditis elegans has a simple sensory system, consisting

of 60 ciliated sensory neurons that sense chemical, olfactory,

thermal and mechanical stimuli and relative position of the

body (proprioception). Three groups of sensory neurons par-

ticipate in the identification of chemical cues, the amphids and

the inner labial neurons in the head and the phasmids in the

tail [16,17]. The neurons with the most prominent role in iden-

tifying gustatory stimuli are the ASE. ASE neurons together

with ASH mainly, and to a lesser extent ASI, ADF, ASG,

ASJ, ASK, ADL and IL2 in the head and PHA and PHB in

the tail, recognize water soluble attractants and repellents

[18]. Chemotaxis to volatile odorants is mediated by the olfac-

tory neurons AWA, AWB and AWC [19] and the polymodal

neuron ASH [20]. AFD, BAG and ASE neurons sense CO2,

while AQR, PQR and URX neurons are mainly O2 sensors

and weak CO2 sensors [21]. The circuit that senses oxygen

also includes SDQ, ALN, PLN, ADL and ASH neurons

[22,23]. The main sensory neurons that respond to temperature

changes are the AFD neurons, though AWC, ASI, FLP and

PHC also participate in thermosensation [24,25]. Low noxious
temperatures are perceived by PVD neurons [26]. ADL, ASH

and AWB neurons respond to several repulsive stimuli to

produce avoidance behaviour [27,28]. These stimuli include

hyperosmolarity, mechanical stimuli and volatile repellents.

By contrast, sensory neurons called AWA, AWC and ASE are

involved in responses to an attractant [19,28]. Moreover,

ASH together with ASJ, AWB and ASK neurons mediate

light avoidance and electrosensory navigation [29,30]. Thirty

sensory neurons have been identified in hermaphrodites to

respond to mechanical stimuli. These are the ALM, PLM,

AVM, PVM, PVD, ADE and PDE touch receptor neurons

found at the midbody of C. elegans and the ASH, FLP, OLQ,

CEP and IL1 neurons found at the nose tip [26,31–33].

2.2. Sensory transduction
The above sensory receptors are specialized for certain modal-

ities, which are converted to neuronal signals. In C. elegans, the

mechanisms facilitating sensory transduction of single stimuli

have been studied through genetic and behavioural studies

[34,35]. Binding of a chemical ligand or external force on recep-

tor proteins located at the surface of sensory cells provokes

conformational changes that, depending on their relative

strength, can lead to the induction of intracellular chemical

alterations. Such alterations can subsequently lead to the

generation of electrical signals, through which sensory in-

formation is transferred to the nervous system. Sensory

receptor families with chemosensory and mechanosensory

functions are the degenerin/epithelial Naþ channel (Deg/

ENaC) family, the transmembrane channel-like proteins and

ionotropic receptors [18,36–41]. Several sensory receptors

are well characterized, such as the odorants-specific G

protein-coupled receptors [42,43], the mechanosensory TRP

receptors of the NOMPC family [40] and the Deg/ENaC ion

channel receptors that are activated by mechanical stimuli

[36–38,41,44,45].

2.3. Polymodality of sensory neurons
In C. elegans, avoidance responses require either unimodal or

polymodal sensory neurons. In the latter case, single sensory

neurons are able to perceive stimuli from various modalities.

Such neurons are the nociceptors, sensory neurons that

detect intense and putatively harmful mechanic, thermal or

chemical stimuli [46]. A well-studied example of avoidance

response in C. elegans involves the pair of ASH neurons.

They are located at the nose and they are responsible for

sensing and conducting avoidance responses against high

osmotic strength, low pH, food odours, nose touch, heavy

metals and alkaloids [27,33,47]. A reasonable question arising

is how ASH neurons coordinate aversive responses to different

stimuli. Studies in the previous decade have shown that ASH

neurons activate different synaptic pathways to regulate

responses against mechanical and osmotic stimuli [35,48,49].

Combined genetic, electrophysiological and behavioural

analyses showed that this is achieved through differential acti-

vation of postsynaptic NMDA and non-NMDA receptors.

Specifically, although mechanical stimulation activates only

synaptic non-NMDA receptors, osmotic stimuli induce a

much higher secretion of synaptic glutamate that is capable

of activating not only non-NMDA but also extrasynaptic

NMDA receptors. As a result, the same sensory neurons can

sense distinct modalities and adjust behavioural responses
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through different synaptic outputs. Interestingly, polymodal-

ity of sensory neurons also characterizes other organisms. In

Drosophila, antennal nerves respond to ammonia, but also to

air humidity [50,51]. In mice, olfactory sensory neurons

respond to both odours and pressure changes [52]. Hence,

polymodality of sensory neurons is a conserved mechanism

through which single neurons broaden their sensory capacity

and facilitate multisensory integration.

2.4. Co-action of sensory neurons
Sensory neurons can also collaborate to sense external

stimuli. A well-studied paradigm is the sense of carbon diox-

ide [21,53–55]. The main sensory neurons for sensing CO2 are

the AFD and BAG neurons. However, their activity is not suf-

ficient to induce a repulsive behaviour. Degree of repulsion is

dependent, among others, on ambient oxygen-sensing neur-

ons, the URX neurons. Worms with a mutation reducing

expression of the neuropeptide receptor NPR-1 are insensi-

tive to CO2. Carefully designed experiments have shown

that NPR-1 receptor inhibits oxygen-sensing URX neurons,

which are also activated by increases in ambient oxygen

[23,56]. Ablation of the URX neurons in npr-1 mutants

restores CO2 avoidance, suggesting that NPR-1 enables CO2

avoidance by inhibiting URX neurons. Moreover, in npr-1
mutants, oxygen-induced activation of URX inhibits CO2

avoidance. Hence, CO2 avoidance requires either low O2

presence or inactivity of URX neurons.

In another example, worms respond to moisture gradient

through the combinatorial action of both mechano- and

thermosensory neurons. Specifically, the mechanosensory

FLP neurons sense the level of hydration-mediated subcuti-

cular stretching via the DEG/ENaC/ASIC mechanoreceptor

complex. This information is combined with thermal cues

caused by humidity-mediated evaporative cooling that is

generated by stimulation of cGMP-gated channels in the

thermosensory AFD neuron pair [57]. Thus, hygrosensation

in C. elegans requires the integration of both mechanical and

thermal cues.

2.5. Crosstalk of sensory neurons
Sensory neurons are also able to cross-modulate their activity.

Caenorhabditis elegans senses odours intensity through the

combinatorial activity of primary and secondary neurons

that crosstalk through neuropeptides signalling. For example,

although ASE sensory neurons are responsible for salt detec-

tion, dramatic changes in salt concentration are sensed

through recruitment of AWC olfactory neurons. This is

achieved through the release of INS-6 insulin-like peptide by

activated ASE neurons, which, in turn, modulates AWC neur-

ons [58]. Hence, the combined action of ASE and AWC

neurons adjusts sensing of high salinity and relative responses.

In another example, AWC and AWA neurons sense the food

odour benzaldehyde and secrete insulin-like peptides and

acetylcholine, to target and sensitize ASEL and AWB neurons

[59]. Concerted action of the above neurons is necessary for

attraction to benzaldehyde. In conclusion, sensory neurons

have the capacity to decode multisensory stimuli through

polymodality, simultaneous activity or cross-modulation,

and through these mechanisms sensory neurons increase

their capacity to fine-tune multisensory integration and

provoke relative behavioural responses.
3. Interneurons: the decision-making
centres in Caenorhabditis elegans

Organisms need to combine information from various sensory

modalities to achieve a more coherent and composite under-

standing of natural environments. This complex flow of

information, derived from multiple stimuli, must be integrated

into centralized neurons, to be processed and trigger relative

behavioural responses. Anatomical but also genetic and behav-

ioural data suggest that information from sensory neurons is

transferred and processed into a distinct category of nerve

cells, the interneurons (figure 1). A set of five interneurons has

been shown to integrate responses to mechanical stimuli and

affect the locomotor behaviour, AVB, PVC, AVA, AVD and

AVE [8,31,61]. Concerning chemotaxis, activity of AIY inter-

neurons alone is sufficient to mediate chemotactic responses,

mainly by promoting forward movement and gradual turnings

[62]. However, AIA, AIB and AIZ neurons also participate in the

formation of attraction or avoidance behaviours to water soluble

attractants [63–65]. Apart from the integration of gustatory

stimuli, AIY together with AIZ, AIB, AIA and RIA mediate

responses to thermal stimuli [66], while AIY and AIB mediate

responses to olfactory stimuli and osmotic changes [67]. AIY

and RIA interneurons participate in the regulation of avoidance

or attraction by CO2 [68], while RMG interneurons participate in

oxygen sensation [69]. RIM and AVA interneurons are impli-

cated in electrosensory detection [30]. In conclusion, several

studies support that interneurons are the convergence sites of

multisensory inputs from sensory neurons and that they serve

as coincidence detectors [70].

A well-studied example in C. elegans is the AIA inter-

neuron, which is the decision centre of behavioural choice

between the attractive odorant, diacetyl, and an aversive

stimulus, Cu2þ ions. Diacetyl is sensed by the AWA sensory

neurons and Cu2þ ions are sensed by the polymodal sensory

neurons ASH. The AIA interneuron is postsynaptic of ASH

and connected with AWA through gap junctions. Combined

genetic and behavioural analyses revealed that integration

of the two opposing sensory cues is dependent on AIA neur-

ons and, specifically, on the conflicting pathways GCY-28/

CNG-1 and HEN-1/SCD-2, which function in AIA inter-

neurons and modulate their activity [64,71]. According to

the proposed model, the AIA interneurons regulate activity

of the AIB interneurons through inhibitory synapses. The

latter induce avoidance behaviours [67]. Hence, the AIA

neurons are likely to promote attraction to odours through

inhibition of the AIB neurons. Other studies also indicate a

role for the GCY-28/CNG-1 and HEN-1/SCD-2 pathways

in multisensory integration of opposing sensory cues [72].

As in the case of salt chemotaxis learning, the GCY-28/

CNG-1 and HEN-1/SCD-2 pathways are also shown to

modulate food-associated thermotactic behavioural plasticity

[64,73,74].

In another example, octanol, an aversive odorant, is sensed

by ASH neurons which initially activate AIB interneurons

through glutamatergic synapses to promote avoidance be-

haviour. However, in the presence of food, octanol does not

repel worms. AIB interneurons receive synaptic signals from

both the ASH and AWC sensory neurons. The food odour-

sensing AWC and salt-sensing ASER neurons can activate

and deactivate, respectively, AIB through distinct glutamater-

gic transmissions. Upon the presence of food, worms finally



light body touchnose touch

harsh body touch

forward movement backward movement

mechanosensation 

respond to attractants respond to repellents

forward movement backward movement

chemosensation 

hygrosensation 

thermosensation main thermosensors

motor output

motor output

motor output

humidity

motor neurons

motor neurons

motor output

motor neurons

second layer and command interneurons

second layer and command interneurons

AIB

AIZ

AIY

AIA

AFD

AVB

PVC

FLP

ASH OLQ

CEP ADE

PVD PDE

AVM

ASE ADL ASH ASK ASJ

ASI

ADF ASG

AIA

AIY AIB

AIZ PHA

PHB
IL2

ALM
PLM

PVM

RIH

IL1

AFD

ASI

AVD

AVE

AVA

AWC FLP

FLP

stretch temperature

PVD PHC

(a)

Figure 1. Neural circuits of C. elegans sensory processing. Sensory neurons are indicated with blue rectangles, interneurons with red ellipses, motor neurons with
green diamonds and motor output with light blue octagons. Light green triangles indicate sensory stimuli. First layer interneurons are characterized as those that are
postsynaptic to sensory neurons, second layer as those that are presynaptic to command interneurons and command interneurons as those that are presynaptic to
motor neurons. (a) Neuronal wiring diagrams for mechanosensation, chemosensation, thermosensation and hygrosensation. (b) Neuronal wiring diagrams for O2 and
CO2 sensation, osmosensation, electrosensation, pheromone sensation and odour sensation. Arrows denote chemical synapses, while bars denote electrical synapses
(gap junctions). Strength and type (excitatory or inhibitory) of the synapse are not indicated. Interactions can be retrieved from http://wormweb.org/neuralnet [60].
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move towards octanol. Food inhibits AWC neurons and

their positive effect on AIB activity. Moreover, ASER neurons

deactivate AIB. Hence, although octanol initially activates

AIB interneurons and avoidance responses, food odours and

salt inhibit AIB activation and, consequently, abrogate

octanol-evoked avoidance behaviour [75].

3.1. The hub and spoke circuit
Animals need to respond acutely and accurately to environ-

mental threats and stimuli. Research in C. elegans has

revealed a mechanism through which worms respond acutely

to multisensory inputs that regulate social behaviour in

worms. Specified neuronal circuits underlie social behaviour

and facilitate rapid responses to environmental stimuli that

affect aggregation and other aspects of social behaviour [76].

In such a circuit, the ASK sensory neurons, among others,

sense pheromones and connect to a single pair of interneurons,
the RMG neurons. Sensory neurons are also interconnected

through electrical synapses and this complex circuit can

strengthen coincidence responses through lateral facilitation.

Pheromones-sensing neurons and RMG interneurons are con-

nected with gap junctions, thus allowing their direct metabolic

and electrical communication. High RMG activity enhances

ASK responses in social strains, causing hermaphrodite attrac-

tion to pheromones at concentrations that repel solitary

hermaphrodites. Also, solitary strains differ from social strains

in the activity of the neuropeptides receptor gene npr-1 which

mainly acts at the RGM interneurons. Hence, social attraction

in C. elegans is mainly regulated by a neuronal circuit that

largely resembles a ‘hub and spoke’ circuit, in which

RMG interneurons have the role of the ‘hub’ and sensory neur-

ons have the role of the ‘spoke’. Such a system facilitates

the integration of multiple sensory cues and the rapid

response of worms to population density and the presence

of mates [70,76].

http://wormweb.org/neuralnet
http://wormweb.org/neuralnet
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Another example of a ‘hub and spoke’ circuit has been

described to regulate the nose touch response [33]. Here,

three sensory neurons, ASH, FLP and OLQ, sense touch to

the nose and activate RIH interneurons through gap junctions.

In this case, the three sensory neurons serve as ‘spoke’ neurons

and the RIH interneurons serve as the ‘hub’ of the circuit. Sen-

sory neurons interact with each other and this interaction

modifies the electric stimulus that gets transferred to

the ‘hub’ neuron [77,78]. Hence, the formation of gap junctions

between sensory neurons and interneurons and the ana-

tomical pattern of ‘hub’ and ‘spoke’ circuits are common

mechanisms for the facilitation of multisensory integration

and the relative behavioural response.
4. Biogenic amines and neuropeptides
modulate responses to multisensory
inputs

Organisms take decisions depending on their internal physio-

logical state. Hunger, stress and health condition are some of

the factors that modulate their responses to external stimuli.

Internal physiological state affects expression and release of

neuromodulators, molecules that can act from a distance on

nerve cells and can have a general effect on neuronal circuits.

In a previously described multisensory integration circuit,
behavioural response to octanol is mediated through activity

of AIB interneurons [75]. Food and serotonin modulate this

circuit through different modes. Smell of food and serotonin,

which is increased upon feeding, deactivate AIB and avoid-

ance behaviour. Several examples show that, except for

serotonin, other biogenic amines also regulate neuronal

circuits that underlie multisensory integration and relative

behavioural responses [70]. Dopamine serves as a signalling

molecule that affects avoidance and food-searching beha-

viours [79,80]. Tyramine, another biogenic amine that

represents internal metabolic state of C. elegans, regulates

threat tolerance [81]. When worms must cross a hyperosmotic

barrier to reach food sources, the choice is made by the RIM

interneuron. RIM innervates ASH sensory neurons with

tyraminergic inputs. High levels of tyramine represent a

well-fed state for worms. When tyramine levels are adequate,

ASH neurons are activated and promote avoidance behaviour

and backwards movement. Under low tyramine levels, ASH

neurons are inactivated and, as a result, osmosensitivity

is decreased. This causes the worms to move towards the

food source, without being constrained by the hyperosmotic

barrier. Biogenic amines levels indicate internal metabolic

state in animals and the modulation they exert on multisensory

integration is crucial for homeostasis maintenance.

Interestingly, circuits involving different biogenic amines

seem to interact to control feeding behaviour. Serotonergic

NSM neurons promote feeding in the presence of attractive
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odours, though tyraminergic RIM interneurons inhibit

feeding in the presence of aversive cues. These circuits are

shown to interact with each other and the outcome of this

interaction determines feeding behaviour [82].

Except for biogenic amines, neuropeptides are also shown

to affect multisensory integration and behavioural output.

Neuropeptides act as neuromodulators and they can facilitate

interaction between distant interneurons and/or sensory

neurons. There are several examples showing a regulatory

role for neuropeptides on activity of interneurons. AIA inter-

neuron is regulated by HEN-1, which is produced by another

interneuron, AIY [64,71]. Chalasani et al. [83] identified a

neuropeptide-to-neuropeptide feedback loop that controls

sensing ability in primary olfactory neurons. In AWC olfac-

tory neurons, expression of NLP-1 neuropeptide reduces

AWC activity. NLP-1 binds the NPR-11 receptor, which is

located at the postsynaptic AIA interneurons. The latter, in

turn, releases INS-1 neuropeptide that modulates sensitivity

to odours in AWC neurons [83]. In another study, insulin

and NPR-1 neuropeptides were found to regulate and fine-

tune chemosensation through affecting the expression of

receptor genes in chemosensory neurons [84]. Hence, neuro-

peptides play a major regulatory role on multisensory

integration through affecting activity of sensory neurons

and interneurons, and also through facilitating interaction

among interneurons.
5. Deficient multisensory integration and
human diseases

Functional multisensory integration has a strong impact on

the ability of organisms to understand their complex environ-

ment and to sufficiently react against external stimuli. Several

findings support that inability to properly integrate environ-

mental cues might lead to neuropsychiatric disorders in

humans, such as autism, schizophrenia and attention deficit

hyperactivity disorder (ADHD) [85–87]. Interestingly, these

disorders are characterized by deficient sensory processing

and by common comorbidity [88–92]. Although relative

mechanisms are still unknown, several lines of evidence

suggest a link between certain neuropsychiatric disorders

and dysfunctional sensory integration.

Autism spectrum disorders (ASDs) are associated with

altered multisensory processing and inability to integrate
multisensory inputs into a unified percept [93–95]. In mouse

models of ASD, multisensory integration is impaired. This is

possibly due to impaired integration in the insular cortex, a

brain centre where sensory, emotional and cognitive infor-

mation is converged [96–99]. In support, recent evidence

suggests specific neuronal pathways underlying multisensory

dysfunction in children with ASD [100,101]. Specifically, a

gain-of-function coding variant in the serotonin transporter

(SERT) is associated with sensory aversion in humans. Upon

its expression in mice, it induces phenotypes reminiscent of

ASD, such as deficient social and communicative function

and repetitive behaviours. Furthermore, these mice exhibit

behavioural deficits in multisensory function that extend

beyond changes in unisensory performance [102]. Hence,

strong indications suggest that dysfunctional multisensory

integration underlies, at least in part, ASDs.

Recent studies show that schizophrenic patients exhibit

altered integration of distinct sensory modalities [103,104].

Although we are still far from the elucidation of mechanisms

that cause schizophrenia, a role for the NMDA receptor has

been suggested [105]. Experiments in rats clearly show that

NMDA receptor antagonists can generate a dose-dependent

selective impairment in multisensory information processing

[106]. In another neuropsychiatric disorder, ADHD, adults

with ADHD-like traits have reduced audio-visual

integration window compared to those with low levels of

ADHD-like traits. The authors suggested that malfunctions

in perception of simultaneous stimuli could lead to the

increased distractibility that characterizes ADHD [107].

Interestingly, the above neuropsychiatric diseases are all

associated with difficulties in sensory processing and sociabil-

ity. The mechanisms underlying this association are still

unknown; however, there is strong evidence that dysfunc-

tional multisensory integration might underlie aetiology

and/or symptoms of a spectrum of neuropsychiatric disorders

in humans.
6. Conclusion
In. this review, we show that multisensory integration is a

prominent mechanism through which C. elegans senses exter-

nal stimuli and fine-tunes relative behavioural responses. In

this complex network of interactions, a distinct category of

nerve cells, the interneurons, have a distinguished role. Simi-

larly to specific brain domains in mammals, interneurons are
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the decision-making centres where the flow of information

from different modalities is converged and assessed. To

initiate the most appropriate behavioural response, inter-

neurons receive information regarding the organism’s

internal physiological state, through neuromodulators.

These internal signals modulate activity of interneurons

and, consequently, related responses according to the organ-

ism’s immediate necessities. In this way, C. elegans takes

threat–reward decisions according to its internal physiologi-

cal conditions. Prior to the flow of information to

interneurons, sensory neurons interact with each other and

receive modulatory signals from the interior physiological

systems. They can even form specific domains with inter-

neurons, which resemble the ‘hub and spoke’ circuits, to

ensure acute, automated and accurate responses (figure 2).

Research in C. elegans has the potential to elucidate basic

rules governing multisensory integration in higher organisms,
including humans. Recent evidence indicates a possible role

for dysfunctional multisensory integration in the aetiology of

certain neuropsychiatric diseases, such as ASDs. However,

dysfunctional multisensory integration might underlie gener-

ally bad performance of the nervous system, including

dizziness, balance problems and disorientation [108]. Hence,

elucidation of mechanisms regulating multisensory inte-

gration will lead to a more precise and holistic view of how

our nervous system functions and how it reconstructs the

physical world in a coherent and unified depiction.
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