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Abstract

Microscopy, particularly of the fluorescent kind, is a frequently used tool in C. elegans

research. The analysis of data from microscopy experiments can, however, be

quite tedious and time-consuming. Thus, automation is desirable. We developed

SegElegans, a two-headed U-net-based convolutional neural network system that is

specifically designed for the automated segmentation of worms, even in images with

large numbers of touching or overlapping individuals. The first part of SegElegans

consists of one encoder and two decoders. The encoder, based on the SmaAt AT

model, applies double convolution layers followed by a Convolutional Block Attention

Module (CBAM). Both decoders use convolutional LSTMs: one performs semantic

segmentation of worm images (body, edge, background, or overlap), while the other

extracts a linear skeleton along each worm. The second part is a post-processing

algorithm that combines the outputs of the two decoders and uses them to generate

accurate instance segmentations. These segmentations can then be fed to ImageJ or

other appropriate image analysis tools. Here we present instructions on how to access

and run this system. We provide an online, cloud computing-based implementation as

well as two methods to use the SegElegans models offline, on a local machine, should

the required hardware be available.

Introduction

Caenorhabditis elegans is a eukaryotic model organism with

wide use in the fields of cellular and molecular biology1,2 ,3 .

It is a small (~1 mm for wild type adults) soil-living nematode

worm with a fast life cycle (~three weeks), and a large number

of progeny (typically genetically identical to the self-fertilizing

hermaphrodite parent). Despite its relative simplicity, the

animal is still a complex multicellular organism with defined

and distinct tissues and organs, which, thanks to its small

size and transparency, can be studied in vivo without any

need for fixing or other invasive treatments4 . The capacity

of the worm for in vivo study through microscopy can be

further amplified through the use of fluorescent reporters,
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that permit the easy distinguishment of individual cells

or even the direct visualization of sub-cellular organelles/

components such as mitochondria, lipid droplets, or protein

aggregates, and of processes such as signal transduction,

gene expression, vesicle fusion, autophagy, neuronal and

muscle action potentials, etc.5,6 ,7 ,8 ,9 ,10 ,11 . In addition, the

nematode is also highly amenable to genetic manipulation

through mutagenesis12 , transgenesis via microinjection or

microparticle bombardment13 , CRISPR editing14 , and, most

importantly, when it comes to easy and cost-effective

genetic screening, RNAi15 . This manipulation permits the

extensive study of genes and their role in the nematode

itself, while simultaneously, thanks to the significant genetic

homology that C. elegans exhibits to other model organisms,

making foundational discoveries with relevance all the way

to humans16,17 . Finally, this homology/conservation also

makes the worm an ideal initial testing ground for drugs and

chemical agents, allowing the elucidation of the mechanisms

of drug activity, the identification of potential activity-modifying

genetic variations, and the discovery of potential unwanted

interactions and off-target effects18,19 ,20 .

All the above-mentioned advantages have rendered C.

elegans an attractive model for cellular and molecular

biology studies, particularly for scientists interested in the

in vivo and often real-time monitoring of processes via

microscopy. Such studies typically involve a significant

amount of image analysis through special software, with the

most widely used option being ImageJ21,22 ,23 . A common

characteristic of the analysis through such software is the

need for the user/researcher to specify Regions of Interest

(ROIs) for analysis through the use of selection tools.

Quite frequently, each individual worm in an image will be

selected as its own ROI, with the aim to acquire per-worm

information about simple morphological features (such as

body dimensions) or more "advanced" experimental readouts

such as the expression levels of a gene (measured with a

fluorescent reporter), the readout of a ratiometric reporter, the

number and size of lipid droplets, the formation of protein

aggregates, the morphology of individual organelles and their

networks etc.5,8 ,10 ,24 ,25 ,26 ,27 . These per-worm selections

are typically made manually, since automatic selection

methods that are based on standard image processing

algorithms are usually not capable enough to distinguish

the shapes and features of the worm, especially in darkfield

images where the outlines of the worms are not clearly visible

or in brightfield images with significant numbers of animals

that touch and overlap. The manual process is, however, slow

(20 s to 1 min per worm depending on the precision needed

and the experience of the user), laborious, and subject to user

bias and error.

An alternative and much more powerful approach for the

generation of individual C. elegans ROIs (a task typically

referred to as segmentation in the field of computer vision)

is to automate it with the help of deep learning/neural

network techniques. Convolutional neural networks based

primarily on the Mask R-CNN28  and the U-net architectures29

have produced decent results in segmentation tasks on

various biological model systems30,31 ,32  including in C.

elegans33,34 ,35 ,36 ,37 ,38 ,39 , but none have provided a

satisfactory solution to the problem of generating full body

segmentations that correctly distinguish individual animals

(instance segmentation) in high resolution images with large

numbers of touching or outright overlapping worms. In order

to meet this need, we developed SegElegans, a deep learning

model specifically designed and optimized for this task40 .

SegElegans is comprised of two major parts (Figure 1).

The first part is a two-headed U-net variant convolutional
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neural network. It is composed of one encoder block and

two decoder blocks. The encoder block is based on the

SmaAt AT model41  and uses double convolution blocks

for each layer feeding into a Convolutional Block Attention

Module (CBAM)42 . The two decoder blocks are based on

the convolutional long short-term memory (LSTM) network43 .

One decoder is responsible for categorizing each pixel of the

images as a part of the main body of a worm, a part of the

edge of a worm, a part of the background, or a part of an area

where worms overlap (this is typically referred to as semantic

segmentation). The other decoder is responsible for drawing

a linear "skeleton" along the length of each worm. The second

part is a post-processing algorithm that combines the outputs

of the two decoders and uses them to generate accurate

instance segmentations. It initially identifies the segments of

true overlaps by comparing the semantic segmentation output

to the skeleton one. Then it outputs the instance segmentation

directly for worms without overlaps or by assembling it from

segments for overlapping ones40 . These segmentations are

saved as binary masks as well as ImageJ compatible ROIs.

Protocol

The following sections include detailed instructions on how to

make effective use of SegElegans (Figure 2). They include

instructions on preparatory image acquisition (Section 1), how

to run the model online (Section 2) or offline (Sections 3-5),

and the import of ROIs to ImageJ or other tools (Section 6).

Since the evaluation of images through the model requires a

PC with a CUDA compatible Graphics Processing Unit (GPU)

that has at least 6 GB (ideally more) of video random access

memory (VRAM), most users (provided they have access to

Google's services) are advised to utilize the online version

of the model which satisfies and surpasses these hardware

requirements through cloud computing (Section 1 > Section

2 > Section 6). Alternatively, users who have access to

appropriately powerful hardware and a basic understanding

of command line/terminal use (or users who lack access to the

aforementioned cloud computing options) may find running

the model locally more convenient (Section 1 > Section 3 >

Section 4 or 5 > Section 6).

1. Acquisition of sample and guide images

1. Use SegElegans to acquire segmentations of adult

worms from any worm strain, regardless of what

fluorescent reporters they may or may not express.

If the phenotype(s)/data of interest are measured in

brightfield images, acquire them normally using a

widefield microscope and compatible software, using a

4x or similar objective lens.
 

NOTE: SegElegans can analyze images with a wide

range of brightness and contrast, although it is preferable

that there are no saturated bright or dark pixels. In regard

to dimensions, the system has been trained with 1328 x

1048 images but should work with any image that is at

least 512x512 in size.

2. If the phenotype(s)/data of interest are measured in

darkfield images (typical when using one or more

transgenic fluorescent reporters or dyes), acquire

brightfield images alongside the data to be used as

guide images (as explained in step 1.1). Ensure the

guide images perfectly match the darkfield images of

the fluorescence channel(s) spatially and as close as

possible timewise, ideally by using the multichannel

acquisition options that are provided by the microscope's

operating software. Save the guide images in a separate

folder from the corresponding darkfield data images,

using the same name for both.

https://www.jove.com
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2. Running the online version of SegElegans

1. Log in to a Google account on a web browser. Creating

a fresh dedicated lab account for this purpose is

recommended.

2. Enter Google Drive (https://drive.google.com) and

upload the folder with the brightfield images (data or

guide). As mentioned before, if guide images are used to

generate ROIs for darkfield images, do not include said

darkfield data images in this folder.

3. Go to https://github.com/KonstantinosKounakis/

SegElegansOnline/tree/v1.0 and click on

the SegElegans Body Prediction Interface.ipynb file.

Click on the Open in Colab button at the top of

the file that opens. The Jupyter notebook/interface for

SegElegans will open on Google Colab.

4. Execute code block 1 by pressing the play ( ) button

under the title. Grant the runtime permission to run the

code and observe the output after execution is over

(a green checkmark appears next to the play button).

Colab should automatically run the correct, CUDA-

compatible runtime and display an NVIDIA-SMI output

table. Otherwise, force the use of a T4 GPU runtime

through the Runtime > Change runtime type menu.

5. Execute code block 2 to load the contents of Google

Drive into the runtime. Accept all confirmation dialogues

and grant all requested permissions.

6. Execute code blocks 3 then 4. Block 3 will take a couple

of minutes to finish, so ensure the green checkmark has

appeared before proceeding to 4.

7. Open the icon with the folder tab to the left of the Colab

interface. This will display the files that are loaded into

the runtime, including the imported contents of Drive as /

content/drive/MyDrive. Right-click on the folder with the

images, copy the path, and paste it into the test_images

input form of code block 5. Ensure it looks like this: /

content/drive/MyDrive/Imagefolder. Similarly, specify

a path for the analysis output (e.g., /content/drive/

MyDrive/Imagefolder/Output). Note that paths in this

environment use a forward slash to separate folders (/).

8. Execute code block 5.

9. Specify the exact extension of the images to be analyzed

by the model in the provided form of code block 6. For

the purpose of this input ".tif", ".TIF", and ".tiff" are treated

as different extensions.

10. Do not adjust the batch_crop_img input in code block

6 if the system is running in the default T4 GPU runtime

(which is provided for free to all users for a limited number

of hours per day, depending on usage levels). Reduce it

if the runtime raises memory availability issues.

11. Execute code block 6. This will take some time, so ensure

the green checkmark has appeared before proceeding.

12. Execute code block 7. Do not adjust its inputs for

the default T4 runtime, but reduce the number of

subprocesses or outright disable parallel processing if

memory availability issues emerge. This will also take

significant time.

13. Access Google Drive in a different browser window or tab

and navigate to the output folder designated in 2.7.
 

NOTE: At this point, SegElegans has concluded the

initial evaluation and post processing of segmentations

and has created several subfolders with outputs.

0_summary results contain graphs summarizing the

output for each image, with an index number assigned

to each worm. 1_complete_mask contains the curated

binary masks for all segmentations the algorithm has

https://www.jove.com
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decided are good for analysis. 1_edge_small_mask

contains binary masks for all segmentations the

algorithm has decided to reject because the animals

are too small or partially obscured at the edge of the

image. 1_overlap_mask contains binary masks for all

segmentations of worms that exhibited real overlaps,

and are, by default, not added to the curated output.

1_all_rois_results contains the segmentations of ALL 3

types, regardless of curation, in the ImageJ format (zip

files with ROIs).

14. At this point, choose one of the three options:

1. Use the ROIs provided in 1_all_rois_results in

ImageJ and reject unwanted ROIs after the import

there (see protocol section 6).

2. Accept the curated good masks without any manual

correction (and without the inclusion of overlapping

worms) (skip to 2.16).

3. Manually adjust the curation by selecting the worms

(including the overlapping ones) to be included in the

output (continue to 2.15).

15. In order to manually adjust the curation, use code

block 8. Examine the results of the initial curation from

the summary graphs in the 0_summary results folder.

For each image that needs correction, input the full

name (with extension) of the original input image in the

"name_image_change" form and the numbers of the

masks to be kept (from the summary graph), separated

by commas in the "index_images" form. Execute code

block 8. Repeat this step for any other image that needs

correction.

16. After correction or if users choose to accept the initial

curation without corrections (and without the overlapping

worms), execute code block 9. A new subfolder will

be created in the outputs folder in Google Drive called

2_curated_rois_results. It includes all the final curated

segmentations in the ImageJ format (zip files with ROIs).

17. In order to execute the process again for a different folder

of images, reset the runtime through the menu Runtime

> Restart Session and start from the beginning.

3. Preparing the offline version of SegElegans
before the first use

1. As an alternative to running SegElegans online on

Colab, an offline version of SegElegans is available

for users who cannot or prefer not to use Google's

cloud computing services. This requires a PC (Windows

or Linux) with a CUDA-compatible GPU (https://

developer.nvidia.com/cuda-gpus) that has at least 6 GB

of VRAM (although 16 is recommended if available and

affordable).
 

NOTE: The following instructions in sections 3-5 are

focused on Windows, but the software can also run on

Linux-based systems with some small changes in the

commands used.

2. Download the CUDA toolkit installer from https://

developer.nvidia.com/cuda-downloads following the

instructions to get the version that is appropriate for the

device used.
 

NOTE: SegElegans has been tested with versions

12.9 and 13.0 of the toolkit and CUDA Version 11 in

Windows, however future versions are expected to retain

backwards compatibility.

1. Install the toolkit, following the instructions of the

installer itself. Visual Studio is not needed.

3. Download the appropriate version of the Python installer

for the device from https://www.python.org/downloads/.

https://www.jove.com
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Install Python, following the instructions of the installer

itself, and ensuring python.exe is added to PATH.
 

NOTE: SegElegans was built and tested on Python 3.13,

but future versions are expected to retain backwards

compatibility.

4. Go to https://github.com/KonstantinosKounakis/

SegElegansOffline/releases/tag/v1 . Click on the Source

code (zip) link to download the package with the

necessary files to set up and run SegElegans locally.

5. Extract the zip file. Place it in a high or even top-

level folder, such as C:\SegElegans. The contents

of the zip file already come inside a subfolder

SegElegansOffline-1.

6. Open the Windows command prompt (cmd.exe). Type

the command python -m venv "fullsegeleganspath"

where "fullsegeleganspath" is the full path, in quotes, into

the SegElegansOffline-1 subfolder.
 

NOTE: For example, if the zip file was extracted

in C:\SegElegans, the full path is C:\SegElegans

\SegElegansOffline-1 and the command will be python -

m venv "C:\SegElegans\SegElegansOffline-1" . Note

that paths in this environment use a backslash to

separate folders ("\").

7. In the command prompt, use standard controls

to navigate inside the SegElegansOffline-1 folder

and execute the command Scripts\activate. A

(SegElegansOffline-1) label should appear before the

next prompt cursor, indicating the Python environment is

now active.

8. While inside the active (SegElegansOffline-1)

environment, run the command pip install -r

requirements.txt . The process will take some time.

9. Input and execute the command python

assemblenetworks.py .
 

NOTE: SegElegans is now ready to run. Two ways

to achieve this are provided: a quick script that will

automatically provide all segmentations as ImageJ ROIs

without the option to manually correct the curation

(section 4), and a local Jupyter notebook that will provide

the option to overview and correct the curation (section

5). The latter approach is recommended for most users.

4. Running the offline version of SegElegans with
a quick script

1. Open the Windows command prompt (cmd.exe). As

described in step 3.7, navigate to the SegElegans

environment folder and activate it.

2. In order to use the quick script, while in the

command prompt with the active (SegElegansOffline-1)

environment input and execute the command python

SegElegansBodyQuickEval.py -i "pathtoinputfolder"

-x <fileextension> where "pathtoinputfolder" is the

full path, in quotes, to the folder with the brightfield

images (e.g. "D:\Data\Experiment12365\Condition 1")

and <fileextension> is the precise file extension of the

images users wish to analyze (Example ".TIF"). Type

the command python SegElegansBodyQuickEval.py -

h for instructions on additional parameters that can be

changed to accelerate the processing by the script if the

device can handle it.
 

NOTE: The output folder in this case will be created

inside the input folder (So for the above example:

"D:\Data\Experiment12365\Condition 1\Output"). Inside,

there is a series of subfolders. 0_summary results

contain graphs summarizing the output for each

image, with an index number assigned to each worm.

https://www.jove.com
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1_complete_mask contains the curated binary masks

for all non-overlapping segmentations the algorithm has

decided are good for analysis. 1_edge_small_mask

contains binary masks for all segmentations the

algorithm has decided to reject because the animals

are too small or partially obscured at the edge of the

image. 1_overlap_mask contains binary masks for all

segmentations of worms that exhibited real overlaps.

1_all_rois_results contains the segmentations of ALL

3 types, regardless of curation, in the ImageJ format

(zip files with ROIs). Since there is no way to manually

correct curation here, 2_curated_rois_results includes

by default all segmentations deemed good by the

algorithm AND all overlapping segmentations in the

ImageJ format (zip files with ROIs).

5. Running the offline version of SegElegans with
a Jupyter notebook

1. Open the Windows command prompt (cmd.exe). As

described in step 3.7, navigate to the SegElegans

environment folder and activate it.

2. In order to use the Jupyter interface, while in the

command prompt with the active (SegElegansOffline-1)

environment, input and execute the command jupyter

notebook. This will open a web browser window/tab with

a locally hosted site. In the initial screen, select the file

SegElegansOfflineJupyterInterface.ipynb.

3. Execute the code in code block 1 by selecting it (click on

the left outside of the actual code) and pressing the play

( ) button on the toolbar above. A confirmation message

will appear below the code block when the execution is

complete.

4. Execute code block 2. This will generate some input

forms in the readout underneath the code block.

Fill in the generated forms with the path to the

input folder with the brightfield images (Example:

"D:\Data\Experiment12365\Condition 1"), the desired

path for the analysis output (Example: "D:\Data

\Experiment12365\Condition 1\Output"), and the precise

file extension of the images to be analyzed (Example

".TIF"). Adjust the additional provided settings (increase

the number of subcrops per batch to 9 or 16, and run

multiple post-processing parallel processes) if the device

is sufficiently capable.

5. Execute code block 3.

6. Execute code block 4. This will take some time, so ensure

it is complete before proceeding.

7. Execute code block 5. Again, this will take some time.

After this, navigate to the output folder designated above.
 

NOTE: At this point, SegElegans has concluded the

initial evaluation and post processing of segmentations

and has created several subfolders with outputs.

0_summary results contain graphs summarizing the

output for each image, with an index number assigned

to each worm. 1_complete_mask contains the curated

binary masks for all segmentations the algorithm has

decided are good for analysis. 1_edge_small_mask

contains binary masks for all segmentations the

algorithm has decided to reject because the animals

are too small or partially obscured at the edge of the

image. 1_overlap_mask contains binary masks for all

segmentations of worms that exhibited real overlaps,

and are by default not added to the curated output.

1_all_rois_results contains the segmentations of ALL 3

types, regardless of curation, in the ImageJ format (zip

files with ROIs).

https://www.jove.com
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8. Similar to the online version of SegElegans, use any of

the three options listed below:

1. Use the ROIs provided in 1_all_rois_results in

ImageJ and reject unwanted ROIs after the import

there (see protocol section 6).

2. Accept the automatically curated good masks

without any manual correction (and without the

inclusion of overlapping worms) (skip to step 5.11).

3. Manually adjust the curation by selecting the worms

(including the overlapping ones) to be included in the

output (continue to step 5.9).

9. In order to manually adjust the curation, use code blocks

6 and 7. First execute 6. This will create input forms in

the readout underneath the code.

10. Examine the results of the initial curation from the

summary graphs in the 0_summary results subfolder.

For each image that needs correction, input the full name

of the INPUT image (with extension) in the Image to

correct: form and the numbers of the masks to be kept

(from the summary graph) separated by commas in the

Masks to keep: form. Execute code block 7 and ensure

execution is complete. Repeat this step for any other

image that needs correction.

11. After the curation correction is done or if users choose to

accept the initial curation without corrections (and without

the overlapping worms), execute code block 8. A new

subfolder will be created in the designated outputs folder

called 2_curated_rois_results. It includes all the final

curated segmentations in the ImageJ format (zip files

with ROIs).

12. In order to execute the process again for a different folder

of images, reset the runtime through the menu Kernel >

Restart Kernel and Clear Outputs of all Cells and start

from the beginning.

6. Importing the segmentations to ImageJ (or
alternatives)

1. Open one of the actual data images on ImageJ.

2. Open the corresponding zip file with the ROIs of

that image. This will load the selections into the

ImageJ ROI manager. If they are ROIs from the

2_curated_rois_results output they are ready for

analysis with the desired methods normally used

(preferably with the use of macros to further automate

and accelerate the process).

3. If they are ROIs from the 1_all_rois_results output,

remove unwanted segmentations from the ROI manager.

Select them and press the Delete button on the manager

window itself. Do not press the Delete key on the

keyboard, as that deletes the contents of the selection in

the image instead.

4. If software other than ImageJ is needed for the analysis,

the ROI format will most likely not be compatible.

In that case, import segmentations in the universally

utilized form of binary masks, which are provided in

the 1_complete_mask and 1_overlap_mask folders.

Consult the instructions of the receiving software on how

to perform that import.

Representative Results

By following this protocol, researchers should be able

to extract high-quality worm segmentations, even for the

analysis of fluorescence images without visible worm

borders. As discussed in section 6 of the protocol, these

segmentations can be imported directly to ImageJ and

used for the quick measurement of relevant properties

https://www.jove.com
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such as the intensity of fluorescent reporters (commonly

used for expression quantification) or the number, size, and

morphology of fluorescently tagged areas (used frequently

to study protein aggregates or organelles). Furthermore,

since SegElegans is designed to acquire segmentations

from brightfield images in a fluorescence agnostic manner,

it can assist with multichannel analysis as well, including

the measurement of intensity ratios (for instance, to

quantify the autophagic degradation of specific organelles)

or co-localization metrics (such as when trying to identify

interactions between organelles).

SegElegans achieves a segmentation IoU (Intersection over

Union) score of over 93% (Table 1), surpassing alternatives

at the time of publication40 . In practice, this means that,

after running all images through the described protocol, there

will be some worms that get segmented incorrectly and,

depending on the user's needs, should be ignored from the

analysis or re-selected with manually drawn selections if their

inclusion is deemed necessary.

Our tests suggest that a highly precise manual selection,

such as those used to train SegElegans (following the actual

edge of the animals as closely/tightly as possible), can take

between 30-60 s per individual worm, depending on the user,

leading to an average analysis time of ~245 s per image.

SegElegans can produce segmentations of that quality for

all worms in an image (even if there are 7+ of them) at

under a minute per image, with the time used for manual

corrections of the curation included. On average, effective

use of SegElegans should cut the time needed for worm

segmentation before analysis to a quarter or even a fifth of

what is needed manually (Figure 3).

 

Figure 1: Overview of SegElegans. It is built on a two-headed U-net architecture with 1 encoder and 2 decoders that

separately generate a semantic segmentation of the image and segmentations of the worms' skeletons. These two

segmentations are fed into a post-processing system and are used to generate the final instance segmentation, which is then

output in the form of ImageJ-compatible ROIs and binary masks. Please click here to view a larger version of this figure.
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Figure 2: Summary of the protocol and the multiple alternative options provided. After image acquisition (Section 1),

users can acquire segmentations from guide images by using SegElegans through an online Jupyter interface (Section 2), an

offline Jupyter interface (Sections 3 and 5) or an offline script (Sections 3 and 4). The segmentation output can then be used

in ImageJ or other software to analyze the images containing the actual data (Section 6). The worms used in this figure as an

example are of the AM141 strain10 . Please click here to view a larger version of this figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/69094/69094fig2large.jpg
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Figure 3: Average segmentation time (measured in seconds) per image. Error bars indicate SEM. **** indicates p-value

<0.0001 in Welch's t-test. N = 53 images. Please click here to view a larger version of this figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/69094/69094fig3large.jpg
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Avg IoU [0.5 cuttof] Avg IoU [0.7 cuttof] Avg IoU [0.9 cuttof]

Model Whole Image Per Worm Whole Image Per Worm Whole Image Per Worm

EmbedSeg30 0.8775 0.9017 0.823 0.8867 0.6891 0.7247

UMF U-Net32 0.9266 0.9382 0.9266 0.9088 0.9266 0.9088

SmaAt DS41 0.9272 0.9238 0.9272 0.8895 0.9272 0.8895

SmaAt AT41 0.9343 0.9498 0.9343 0.926 0.9343 0.926

SegElegans40 0.9355 0.9627 0.9355 0.9461 0.9335 0.9461

Table 1: Intersection over union (IoU) score comparisons at different cutoffs for full body segmentations between

SegElegans and other published C. elegans convolutional neural networks32,34 ,40 ,41 .

Discussion

The methodology presented here should allow users to

analyze C. elegans microscopy experiments in a significantly

faster timeframe without any loss in accuracy. Since it extracts

segmentations from brightfield guide images independently

of the actual fluorescence (as discussed in protocol section

1) it can be used with any strain and for any application

that requires measuring phenotypes on a per-worm basis.

These can include single-channel applications such as the

quantification of the formation of abnormal protein inclusions

in disease models10  (like in the example shown in Figure

2), the activity of transcriptional reporters26 , or the size

and number of lipid droplets44 . They can also include

multichannel assays, such as the measurement of hydrogen

peroxide levels with a ratiometric sensor27 , the assessment

of organelle and protein co-localizations11 , the detection

of macromolecule modifications45 , and/or quantifications

of various types of autophagy8,46 . The segmentations

generated by SegElegans are (as discussed in section 6)

provided in both the ImageJ format, permitting quick and

easy usage in the "golden standard" ecosystem for biological

image analysis21,22 ,23 , and in the universal binary mask

format, permitting import into any more bespoke solution a

lab may utilize. Finally, in addition to the fact that at the time

of publication SegElegans already inherently achieves the

best segmentation quality available on the overlapping full

body task compared to alternatives (Table 1)32,34 ,40 ,41 , the

implementations provided in this protocol also allow the user

to easily correct some of the possible mistakes in the curation

step (as discussed in sections 3,5, and 6), ensuring that all

correct segmentations can be included in the output while the

bad ones are discarded.

SegElegans has been designed to work for all worms from

the late L4 stage and older at a magnification where multiple

full bodies can be observed (~4x objective). Animals with

dramatically abnormal body phenotypes (such as dumpy or

mutlivulva) may, however, not be segmented correctly. In

addition, worms that are too small (L3 and younger) should be

segmented correctly, but will be rejected during the automatic

curation step. Users who wish to work with such animals will

need to add them to the output during the curation correction

step, or use the outputs from the 1_edge_small_mask and

https://www.jove.com
https://www.jove.com/
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1_all_rois_results folders. The system has been trained with

images from multiple microscopes and a variety of brightness

and contrast settings to ensure maximum compatibility for

users with different equipment, but it is preferable for users to

utilize their acquisition software's features (such as brightness

histograms, which are widely used) to ensure there are at

least no saturated dark or bright pixels in their guide images.

In all cases, it is important that the images used are in perfect

focus. Images that are generally blurry or images that blur

due to worm movement will not provide good results. Finally,

it is absolutely critical to ensure that the brightfield guide

images perfectly match the fluorescence darkfield images

spatially and as closely as feasible temporally (especially if

the sample worms are not completely immobilized). This is

necessary to guarantee that the segmentation generated by

the guide image can perfectly apply to the data. Thankfully,

most modern microscopy acquisition software provides tools

that allow the operator to acquire 2 or more channels almost

simultaneously with a single button press, provided that the

software has actual mechanical control over the microscope's

light sources and filter wheels.

In addition to the obvious advantages SegElegans provides

in expediting analysis, we argue that its use can also lead

to tangible improvements in the overall quality of research,

as time is often a limiting factor that constrains what can

be done and can force a scientist to make concessions in

their experimental designs. Fast automation tools can allow

researchers to conduct more assays with more experimental

conditions and with larger sample sizes, leading to more

informative results and to more secure and well-founded

conclusions. In addition, usage of SegElegans can lead

to better data reproducibility via replacing the part of data

analysis that is most susceptible to user bias and differences

in experience.

The incorporation of deep learning techniques in life sciences

is still in a relatively early stage, in part due to the fact

that it requires coding experience that is somewhat outside

the scope of a standard Biology curriculum, and specialized

hardware that can be outside the scope of standard laboratory

equipment. We have no doubts that the field will quickly

adapt and catch up in both ways, as deep learning becomes

increasingly widespread and major microscopy and camera

manufacturers incorporate artificial intelligence (AI) driven

capabilities into their products. For now, however, we have

developed SegElegans with maximum accessibility in mind,

providing a network model that is small and efficient enough

to be run in freely available cloud computing services such

as Colab without requiring the user to type a single line of

code or perform any training themselves. The current version

of SegElegans is limited to providing full body segmentations,

but we plan to expand it with models for segmenting specific

areas or tissues of adult animals in the future (as tools for

such segmentations are currently limited to worm embryonic

stages and dependent on the use of specific fluorescent

proteins as segmentation guides37,38 ,39 ).
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