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13.1 Introduction

After three decades of extensive research on the molecular biology of aging, we can
now specify several molecular and cellular processes that accelerate or delay aging in
animal model systems. Molecular mechanisms that affect metabolism, caloric and die-
tary consumption, genomic stability, telomere attrition, autophagy and epigenetic
alterations are the major anti-aging interventions shown so far to extend longevity,
increase healthspan and delay the onset of age-related pathologies in animals.1 Among
them, the most complicated and least investigated are the epigenetic alterations that
progress with aging. These are described as reversible alterations of chromatin that are
heritable, but do not affect underlying DNA sequences and, consequently, permanent
genetic information. Several causes, such as diet, genes, environmental and lifestyle
factors influence epigenetic alterations, which, together with genetic information, pre-
ordain lifespan in animals. Consequently, differential epigenetic regulation of genetic
information can sufficiently explain differences in longevity of identical twins and ani-
mals with the same genetic background. Several studies have shown that epigenetic
information changes through aging and, most importantly, that these changes are asso-
ciated with age-related progressive physiological deterioration and the development of
age-related diseases, such as cancer, neurodegeneration and cardiovascular diseases.2�4

Although the mechanisms underlying both the impact of aging on epigenetic altera-
tions and of the latest age-related physiological decline are not fully understood,
research on epigenetic phenomena that occur with age can provide novel anti-aging
therapeutic approaches. This is due to the reversibility of epigenetic changes via the
administration of drugs that correct these chemical modifications on proteins and
nucleic acids.

Epigenetic alterations include various modifications of chromatin components, his-
tones and DNA. These changes are described as the “epigenome” and can be even
passed down to the offspring and impact their health in a transgenerational manner.5

Histone modifications, chromatin remodeling, DNA methylation and altered expres-
sion of non-coding RNA molecules (ncRNAs) constitute epigenetic alterations.
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Through altering chromatin accessibility and genomic activity, the epigenome imposes
various effects on cellular function. Chromatin activity, level of protein expression, the
activity of transposable elements, integrity of telomeres and the stability of the genome
have been suggested to mediate the effects of the epigenome on health and lifespan.

In this review, we will briefly describe the nature of the major epigenetic altera-
tions and their relevance to longevity determination. Furthermore, we will present the
primary findings that correlate epigenetic changes with the development of the major
age-related diseases, cancer, neurodegenerative and cardiovascular diseases.

13.2 Epigenetic alterations and aging

Genetic activity is largely dependent on the accessibility of transcription factors to
DNA. DNA is tightly bound by histone proteins, to compose chromatin. Depending
on its flexibility, chromatin can be found in either two forms, euchromatin and het-
erochromatin. The former consists of a decondensed, highly transcriptable structure,
while in the latter, the strong DNA-histone binding does not allow transcription fac-
tors to access DNA and ignite transcription. Consequently, genetic and environmental
factors that alter chromatin tightness can affect transcription activity.6 This is achievable
through quantitative changes in the expression of histone proteins, expression of his-
tone variants, histone post-translational modifications, such as acetylation and methyla-
tion, ATP-dependent remodeling, and DNA methylation. These modifications affect
longevity via deregulation of genetic activity and genomic stability. Moreover, altered
expression of ncRNAs has a regulatory role on protein translation.

13.2.1 Histone depletion
Several studies show that canonical histone levels are reduced through aging, while
ectopic upregulation of histone biosynthesis increases lifespan.7�11 Age-related changes
in telomeres, histone chaperones, and lysosomal activity are suggested to cause histone
depletion.9,10 Strong evidence suggests that the effect of histone depletion on lifespan
depends on the nature of the depleted histonic genetic area, and also on the degree of
the depletion.10,11 On the other hand, in mouse tissues and neural stem cells, the
expression levels of H3 histone is not significantly changed with aging, but depending
on the genomic location, the occupancy of H3 histone is differently affected.12 As a
result, chromatin at pro-inflammatory genes is more accessible and active; an observa-
tion that suggests differential nucleosome occupancy as a mechanism for reprogram-
ming genetic expression through aging.
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13.2.2 Non-canonical histone variants
With the exception of gradual histone depletion with age, non-canonical histone iso-
forms are increasingly expressed with age, such as the histone variants H3.3 and H2A.Z,
accompanied by the downregulation of canonical histones.13�17 For example, the H2A
histone variant, H2A.J, accumulates with aging in mouse tissues and human skin.18

H2A.J overexpression activates inflammatory genes, induces senescent-associated pheno-
types and is suspected to contribute to the development of age-related chronic inflam-
mation and diseases. Hence, not only quantitative, but also qualitative age-dependent
alterations in histone expression affect healthspan.

13.2.3 Histone acetylation
A major chemical modification that alters the histone-DNA binding strength is acetyla-
tion of histonic lysine domains. The positively charged lysine domains significantly con-
tribute to the attachment of histones on DNA. As a result, any chemical change that
reduces the positive charge of lysine, weakens the interaction between histones and
DNA. Such a chemical modification is the addition of acetyl moiety on the ε-amino
groups of lysine, which neutralizes its positive charge and reduces histone-DNA interac-
tions. Transfer of acetyl moiety is catalyzed by histone acetyltransferases (HATs), while
deacetylation is catalyzed by histone deacetylases (HDACs). Activity of the HATs loos-
ens histone-DNA interactions and increases transcription, while activity of HDACs has
the opposite effect. Several reports indicate the importance of histone acetylation on
longevity. Loss of HATs Gcn5, CREB-binding protein (CBP), and RTT109 in yeast,
Caenorhabditis elegans and Drosophila melanogaster reduces longevity, while loss of members
of the sirtuin genes, coding for evolutionary conserved NAD1-dependent deacetylases,
are associated with longevity extension in invertebrates and vertebrates.19�25 CBP activ-
ity is reduced through aging and correlated with lifespan in several mice strains. In sup-
port, lifespan extension by dietary restriction (DR) in C. elegans is inhibited by the loss
of the cbp-1 gene, thus linking DR-induced longevity enhancement with increased acet-
ylation. In addition, loss of acetyltransferase Gcn5 in yeast decreases lifespan through
impeding interplay of metabolism and stress responses, chromatin-dependent gene regu-
lation and genome stability. Contrarily, downregulation of the histone H4K12-specific
acetyltransferase Chameau extends longevity in flies, through uncoupling age-related
metabolic alterations from transcriptional regulation.26

Maybe the most remarkable examples that highlight the importance of histone acety-
lation on longevity determination come from studies on the activity of the Sirtuin dea-
cetylases.27 Sirtuins are involved in the regulation of cell metabolism, DNA repair,
inflammation and apoptosis.28 In yeast, deletion of the histone deacetylase gene rpd3 and
upregulation of the Sir2 gene, which is activated by caloric restriction, extend lifespan.27
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Similarly, downregulation of histone acetyltransferase Sas2 increases lifespan in yeast.29

Similar effects have been described in worms, flies, mice and cells, thus showing that
these findings are evolutionarily conserved.19,20,22�24,30�32 Mechanistically, Sir2 main-
tains chromatin silencing through deacetylation of the residues H4K16 and H4K56 and
recruitment of other silencing proteins. Sir2 protein levels decrease with aging, while
H4K16 acetylation increases and histone abundance diminishes at subtelomeric regions.
The above are suggestive for an abnormal upregulation of transcription at these loci,
which is associated with the development of aging phenotypes.29,33

Some histone acetylation sites have been reported to be more important for life-
span determination, such as the H4K16. Sas2 targets H4K16 sites at the boundaries of
euchromatin with telomeric regions and H4K16 hypoacetylation has been associated
with defective DNA repair and premature senescence in mice.34�36 Lifespan extension
in flies via Chameau downregulation has been attributed to H4K12 hypoacetylation;
deficiency of SIRT6 deacetylase promotes aging in mice via altered acetylation at
H3K9 and H3K56, which cause telomeres dysfunction. H3K56 acetylation levels are
critical for longevity in yeast, as in H4 N-terminal acetylation, which is regulated by
caloric restriction.7,23,26,29,37�39

13.2.4 Histone methylation
Another type of histone modification that occurs with aging is histone methylation
(HMT). Similar to histone acetylation, HMT is catalyzed by the addition of a methyl
group by histone methyltransferases, while removal of methyl groups is catalyzed by his-
tone demethylases. Depending on the histonic site, methylation can lead to enhanced or
reduced transcription.40 According to the heterochromatin loss model, transcriptionally
inactive areas of chromatin become activated through aging, resulting in disparate pro-
files of gene activity and promoting aging.41�44 Highly methylated histonic sites, such as
H3K9, H4K20 and H3K64, are associated with transcriptional inactivity of hetero-
chromatin.45�47 Tight interconnection of histone hypomethylation and aging pheno-
types is further supported by research in premature aging diseases. Patients with progeria
syndromes have decreased expression of histone methyltransferases, reduced methylation
at H3K9 and H3K27, loss of heterochromatin and changes in heterochromatin architec-
ture.44,48 Furthermore, mild mitochondria damage in C. elegans and mice induces activ-
ity of histone demethylases jmjd-1.2/PHF8 and jmjd-3.1/JMJD3, which delay aging
through mitochondrial unfolded protein response (UPRmt).49 On the other hand, in a
mouse progeria model, inhibition of methyltransferase gene Suv39h1 improved DNA
repair and increased longevity.50

Recent studies suggest a role for specific methylation patterns on longevity. In
worms, trimethylation of H3K4 (H3K4me3) increases with aging. Reduction of the
ASH-2 Trithorax complex proteins, which activate transcription by inducing
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trimethylation of H3K4, decreases H3K4me3 and increases lifespan, while reduction
of H3K4 demethylase RBR-2 decreases lifespan.40,51 Similar results have been
observed after downregulation of the ortholog of RBR-2 in flies, the demethylase
Lid.52 Inhibition of another demethylase in flies, the Dmel\Kdm4A H3K9me3
demethylase, reduces lifespan.53 Trimethylation of H3K9 is abundant in heterochro-
matin, thus suggesting that alterations in the transcriptional activity of heterochromatin
affect lifespan. In support, expression of H3K9me3 methyltransferase SUV39H1 is
reduced through aging in mouse and human cells, which causes the reduction of
H3K9me3 trimethylation, perturbs heterochromatin function and induces loss of B
cell potential.54 Trimethylation of H3K27 is increased with age and catalyzed by the
transcription repressor Polycomb Repressive Complex-2 (PRC2).55,56 Mutations in
subunits of PRC2 in flies reduce H3K27me3, by increasing glycolysis and health-
span.57,58 On the other hand, in human cells and C. elegans, trimethylation of H3K27
is reduced with age.59�61 Reduction of the UTX-1 H3K27 demethylase in C. elegans
extends lifespan by affecting the insulin pathway.59 Accordingly, the link between
H3K27me3 and aging is complex and cell type and/or animal model specific. Another
methylation site, H3K36, is highly methylated proximally to the 3’ end of actively tran-
scribed genes, which is suggestive for a role in transcriptional termination and RNA
processing.62 Loss of H3K36 methyltransferase and mutations at the H3K36 site decrease
lifespan in yeast, while loss of the Rph1 H3K36 demethylase increases H3K36me3 and
enhances longevity.63 In this study, the authors concluded that increased methylation at
H3K36 suppresses cryptic transcript initiation and promotes longevity through recover-
ing transcriptional fidelity in old yeast. The role of H3K36 methylation in the mainte-
nance of transcriptional stability and longevity is presumably evolutionary conserved,
since low levels of H3K36me3 are associated with altered length of 30 untranslated
regions (30UTR) and shortened lifespan in worms and flies.64,65

Histone acetylation and methylation comprise the major and better described histone
modifications. However, histones can be also modified through phosphorylation, ubi-
quitination and sumoylation. Although the biological importance of these modifications
on cellular homeostasis and longevity are not yet elucidated, several reports suggest a
modulatory role for histone phosphorylation on transcription regulation, DNA repair
and chromatin compaction.66 Ubiquitination is involved in transcription activity, inflam-
mation signaling and HMT.67 Sumoylation is involved in inflammation signaling and
the epithelial�mesenchymal transition, which is related to cancer progression.68

13.2.5 ATP-dependent chromatin remodeling
The above described chemical histone modifications alter chromatin compactness and
regulate transcriptional activity. Often these modifications function in concert with, or
through activation of ATP-dependent chromatin remodeling factors to alter the
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nucleosomes positions along DNA and modulate its accessibility to transcription factors
and DNA replication machinery components.69,70 For example, acetylation of the his-
tone H3 N-terminal tail recruits and increases the affinity of the ATP-dependent
chromatin remodelers SWI/SNF and RSC, which leads to nucleosome mobilization
and chromatin remodeling.71 The major groups of ATP-dependent chromatin-remo-
deling enzymes are the SWI/SNF, ISWI, Nurd/Mi/CHD, SWR1 and INO80, and
recent studies prove their importance for lifespan determination.72,73 In worms, chro-
matin remodeler SWI/SNF activates transcription at specific promoters in collabora-
tion with the longevity promoting DAF-16/FOXO transcription factor. Inactivation
of SWI/SNF decreases longevity and DAF-16/FOXO-mediated stress responses.74

Moreover, loss of LET-418/Mi2, the catalytic subunit of the nucleosome remodeling
and histone deacetylase complex (NuRD), increases longevity and environmental stress
resistance in C. elegans, Drosophila and Arabidopsis.75 In yeast, deletion of Isw2 increases
response to genotoxic stress and extends yeast replicative lifespan, while deletion of
components of the ortholog chromatin-remodeling complex in worms also extends
lifespan.76 PRC2, which is able to remodel chromatin and silence genes, has been
implicated in the transcriptional dysregulation that the progeria primary fibroblasts
exhibit.77 These findings provide strong evidence for the evolutionarily-conserved role
of ATP-dependent chromatin remodeling in facilitating stress responses and aging.

13.2.6 DNA methylation
Histone modifications are the primary targets of factors that affect epigenetics, such as
diet, metabolism, environmental pollutants, drugs, etc. Their binding on DNA protects
it from chemical modifications and restricts the accessibility of transcription factors.
Nevertheless, epigenetic factors can directly chemically modify DNA, via methylation at
cytosine residues which are mainly placed 50 of guanine (CpG dinucleotide), located
predominantly at intergenic, intronic and repetitive sequences. The latest are often gen-
erated by transposable elements and the increased methylation they exhibit might be
related to the necessity of cells to inactivate such mobile DNA sequences and avoid
genomic instability.78 On the other hand, hypomethylated CpG dinucleotides are fre-
quently located at promoters and first exons of the majority of genes (CpG islands).
Transfer of a methyl group to cytosine is catalyzed by DNA methyltransferases
(DNMTs), thus generating 5-methylcytosine (5mC). When DNA methylation occurs in
promoters, it leads to transcriptional repression and causes gene silencing.79 Although
DNA methylation levels during the first years of life are similar between monozygotic
twins, significant tissue-specific differences on DNA methylation appear with age, start-
ing from childhood (epigenetic drift).80�82 In animals and humans, a reduction of DNA
methylation occurs with age both globally and tissue-specifically.83�87 Methylation pat-
terns of CD41 T cells from newborn and centenarian individuals showed that DNA
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methylation levels decrease with age. Likewise, CpGs dinucleotides are less methylated
throughout the genome of centenarians, which is characterized by highly heterogeneous
DNA methylation.88 Age-dependent changes in DNA hypomethylation can lead to
pathologies, through aberrant transcription. Progressive DNA hypomethylation at spe-
cific gene promoters has been implicated in the development of autoimmune
responses.89,90 On the other hand, age-related hypermethylation in promoters of genes
that code for transcription and translation regulating factors can severely impact various
cellular functions.91�93 Contrarily, epigenomic analysis of pancreatic β cells revealed
age-related differences in methylation patterns that were associated with the repression
of proliferation and activation of metabolic regulators. B cell function was improved in
old mice, suggesting that epigenetic alterations through aging do not necessarily lead to
pathologies and physiological decline.94

Age-related changes in DNA methylation can be attributed to altered expressions of
methyltransferases, demethylases and environmental factors. The importance of inade-
quate DNA methylation on health and lifespan has been clearly proven in animal mod-
els. In flies, functional dDnmt2, the gene expressing for DNA methyltransferase, is
required for the maintenance of the normal lifespan of fruit flies, while its upregulation
extends lifespan.95 Enhanced DNMT2-induced longevity is achieved via retrotranspo-
sons silencing in Drosophila somatic cells and maintenance of telomeres’ integrity.96 In
support of a beneficial role for DNA methyltransferases on health and longevity, mice
with mutations in the gene coding for DNA methyltransferase 1 (Dnmt1) have
decreased DNA methylation, decreased bone mineral density and body weight, impaired
learning and memory functions in an age-dependent manner, but with canonical sur-
vival.97 Additionally, mutations in the DNA methyltransferase 3 gene (Dnmt3a) cause
premature neurodegeneration and death.98 In honey bees, pharmacological demethyla-
tion enhances lifespan.99 In mice and monkeys, age-related methylation drift was found
to be associated with longevity, while caloric restriction diminished age-related methyla-
tion drift.100 Furthermore, DNA methylation is implicated in transgenerational effects
that regulate lifespan in offspring. In mice, old father offspring mice lived less and expe-
rienced stronger aging phenotypes compared to young father offspring mice. Genome-
wide epigenetic analyses revealed differentially methylated promoters of genes expressing
components of the lifespan regulator mTORC1 signaling pathway.101 Interestingly,
DNA methylation seems to cooperate with other epigenetic alterations, such as HMT,
to regulate transcriptional activity at specific genomic areas, thus suggesting a strong
interconnection between different epigenetic modifications.102

DNA methylation patterns at CpGs have been associated with aging and diseases
such as cancer, obesity, and cardiovascular disease.103�110 Clinical epigenetics aims to
decipher such patterns and use them to predict the biological age of individuals,
improving diagnostics and therapies.111,112 The epigenome is formed by the co-action
of genes, age, environmental factors and lifestyle. Hence, epigenetic profiles are very
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informative regarding the depiction of the health status of an organism.113 This has
challenged the design of supervised machine learning approaches to analyze epigenetic
profiles, with several studies having used machine learning to diagnose diseases.114

There is a great deal of progress in the development of “epigenetic clocks,” aging bio-
markers made of DNA methylation profiles, which enable accurate age estimates.115

However, only a few DNA methylation patterns of CpG sites can allow precise age
prediction116 and more studies are required to further advance this approach.

13.2.7 Non-coding RNA molecules
Non-coding RNA molecules are small or long RNAs that, despite not having a code
for proteins, they regulate cellular function. They are classified into transfer RNAs,
ribosomal RNAs, microRNAs (miRNAs), small interfering RNAs, piwi-interacting
RNAs, small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs, extracel-
lular RNAs and long non-coding RNAs (lncRNAs). Through their regulatory role
on gene silencing, ncRNAs, especially miRNAs and lncRNAs, exert various effects
on chromatin architecture, cell cycle, metabolism, etc., and their dysregulation is rele-
vant to the progression of cellular senescence, cancer, cardiovascular, neuronal and
immune pathologies.117 In yeast, lifespan maintenance is regulated by the repression of
rDNA non-coding transcription, which is achieved through Sir2. Mutations that
reduce ncRNAs expression extend lifespan.118 In human stem cells, ncRNAs expres-
sion from Alu sequences increases with age and causes senescence. Knockdown of
ncRNAs expression reverses this effect.119

MiRNAs play a crucial role on cellular senescence and aging.120 Through binding
with the 30UTR sequence of mRNA molecules, they inhibit translation and nega-
tively modulate gene function. They cause heritable changes without directly altering
the DNA sequence or chromatin structure, and their expression is differentially regu-
lated through aging in mice and humans.121�124 An essential pathway for health and
lifespan determination, regulated by miRNAs, is the insulin pathway.125 In C. elegans,
several miRNAs regulate longevity and stress responses.126,127 The miRNAs lin-4 and
lin-14 have opposite roles on longevity, with lin-14 serving as the target for lin-4.
Reduction in lin-14 activity is dependent on the DAF-16 and HSF-1 transcription fac-
tors, which are the mediators of the insulin pathway effects on healthspan.128 In flies, a
well-established longevity promoting intervention, caloric restriction (CR), is shown
to alter expression of more than 100 lncRNAs, which serve as mediators of CR on
healthspan.129 In mice, the H19 lncRNA participates in a complex that interacts with
histone lysine methyltransferases and facilitates repression of several genes, among
which is the Igf2 (insulin-like growth factor 2).130 Loss of this regulation occurs
through aging in mice and the human prostate.131 Hence, ncRNAs can regulate longev-
ity via interfering with well-established metabolic pathways. Furthermore, ncRNAs are
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also involved in forming the boundaries of heterochromatin.132 The major epigenetic
changes that affect health- and lifespan are summarized in Fig. 13.1.

13.3 Epigenetic alterations and age-related diseases

13.3.1 Cancer and epigenetics
Several studies show similarities between epigenetic changes that occur with aging and
in cancer development.68 Several histone modifications are prevalent in distinct cancer
types. Hypoacetylation at H2BK12 is prevalent in osteosarcoma, hyperacetylated histone
H3 is common in colorectal cancer, extensive hypoacetylation at H3K4 and H3K9
accompanies oral squamous cell carcinoma and ovarian tumors, and invasive colon can-
cer and glioma are characterized by upregulated H3K27ac, which has been shown to
induce lncRNAs secretion in colon cancer cells.133�137 Acetylation of lysine residues at
histone 4 is also correlated with cancer. Acetylated H4K16, as also H4K20me3 are
downregulated in breast, renal, colon and ovarian cancer, while acetylated H3K18 and
H3K4me2 are upregulated in prostate, pancreatic, lung and kidney cancers.138�145

Several other examples establish a causative relation between epigenetic alterations and

Figure 13.1 Epigenetic alterations that regulate health and lifespan.
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cancer. Demethylation of H3K9 has been associated with derepression of genes involved
in breast and esophageal cancers.146,147 P300 and CBP HATs suppress tumors and sev-
eral cancers are characterized by their dysfunction.148 Moreover, deacetylation of several
non-histone proteins, including p53 and STAT3 transcriptional activator, is associated
with cancer.149 Expression of the polycomb group protein enhancer of zeste homolog 2
(EZH2) is higher in metastatic prostate cancer, while its downregulation inhibits cell
proliferation in vitro. EZH2 regulates hypermethylation at H3K27 and represses gene
activity in prostate cells, an effect that is mediated through histone deacetylase activity.150

EZH2 is a marker for breast cancer and glioblastoma.151,152 Several studies suggest a role
for enhanced secretion of exosomes carrying lncRNAs in cancer development, through
mediating intercellular communication in tumor microenvironments.153 Interestingly,
25% of all cancers harbor mutations in genes encoding subunits of the SWI/SNF com-
plexes. Novel findings support an anti-cancer role for SWI/SNF via repressing transcrip-
tion and the facilitation of DNA damage repair.154 Moreover, mutations in the genes
that encode H1 isoforms B�E are causative to the development of B cell lymphomas,
through inducing chromatin relaxation, upregulation of H3K36me2 and loss of repres-
sive H3K27me3, which leads to derepression of developmentally-silenced genes.155

Recent findings suggest a role for miRNAs in cancer development. MiR-205 regulates
differentiation and morphogenesis in epithelial cells and its aberrant expression is frequently
detected in human cancers. Depending on the tumor type, it has been suggested to act as
tumor-suppressor or as oncogene.156 MiR-34a is shown to repress tumor progression
through synergizing with p53 and transcription factors, via inhibition of the transition from
epithelial cells to mesenchymal cells.157 Also, a significant association between the expression
of miR-181 and miR-200 family members and colorectal cancer has been observed.158

Members of the miR-181 family have been suggested to perform their anti-cancerous func-
tion through downregulation of the hepatic transcriptional regulators, CDX2 and GATA6,
and the Wnt signaling inhibitor NLK.159 On the other hand, overexpression of miR-145 is
shown to be carcinogenic, through altering methylation patterns and reducing activity of
genes that regulate DNA damage response and apoptosis, consequently leading to over-
proliferation and enhanced epithelial to mesenchymal cells transition.160

Aging is a risk factor for cancer development and the retrotransposition is upregu-
lated with aging, as in cancers, thus raising the possibility for a role of epigenetic drift
on cancer development via age-related enhanced retrotransposition.8,161,162 In yeast,
age-related histone loss leads to increased retrotransposition, which causes genomic
instability and disruption of cellular homeostasis, an age-related event which can be
reverted via CR in mice.8,163 Hypomethylation at repetitive regions such as Alu and
long interspersed element-1 increases genomic instability and is associated with can-
cer.164,165 On the other hand, cancer is induced by CpG dinucleotides hypermethyla-
tion at promoters of tumor suppressors and esophageal cells of individuals with a long
smoking history and high methylation levels.166�168 Moreover, carcinogenic factors

342 Aging



such as chronic inflammation, Helicobacter pylori and hepatitis B or C infections, as also
with alcoholism, induce aberrant DNA methylation, which forms tissue- and carcino-
genic factors-specific patterning and specificity.137,169�174 Interestingly, the methyla-
tion degree can be indicative of exposure to carcinogens.175

13.3.2 Neuronal diseases and epigenetics
Epigenetic changes comprise a molecular link between aging and neurodegeneration,
with etiology and symptomatology of neurodegeneration being, in many cases, linked
to epigenetic effects.176 Increased retrotransposition has been associated with neurode-
generation and reduced levels of DNA methyltransferases is a common feature in aging,
Alzheimer’s disease (AD) and Parkinson’s diseases (PD).177�179 In support, a deficiency
in 5-hydroxymethylcytosine was found in a mouse model of Huntington’s disease
(HD).180 On the other hand, several studies demonstrated increased DNA methylation
in post-mortem tissues from cohorts of patients with AD.181,182 Histone acetylation at
the repetitive DNA sequences decreases with age in mice brains and altered histone
acetylation has a causative role on age-dependent memory impairment.183,184 Histone
acetylation at certain residues is high in memory regulating brain areas, such as the hip-
pocampus, with these residues being frequently affected in neurodegeneration.185

Hypomethylation at neuronal enhancers in patients with AD is related to synapse degen-
eration.186 Reduced PRC2 activity causes the upregulation of genes activated in HD
and of genes that are known to induce neuronal cell death and neurodegeneration.187

MiRNAs also play various roles on neuroprotection and neurodegeneration, via
non-elucidated mechanisms, with their concentration being dramatically decreased with
age in the human brain.188,189 In flies, expression of miR-34 is altered through aging
and its loss causes brain degeneration and lifespan reduction. Its upregulation extends
lifespan and inhibits human pathogenic polyglutamine disease protein-induced neurode-
generation. This is partially mediated via translation inhibition of Eip74EF.190 On the
other hand, samples from humans with AD and from mice with modeled AD, have dif-
ferent patterns of miRNAs expression compared to controls, as also with elevated levels
of miR-34.191,192 MiR-34 targets and decreases pro-survival factor Bcl2 and antiaging
deacetylase SIRT1 and is suspected to play a causative role on neurodegeneration
onset.121,193 Levels of lncRNAs have been correlated with the expression of mutant
alpha synuclein in presymptomatic PD.194 Several lncRNA molecules are dysregulated
in brains of patients with HD. Some of these have been suggested to target the neuro-
protective transcriptional repressor, REST, a key mediator of transcriptional changes in
neurodegenerative diseases.195,196 Levels of another ncRNA, the miR-181c is decreased
in the brains of AD patients, while its loss increases the levels of the amyloid precursor
protein (Aβ).197 The major epigenetic alterations that are involved in the development
of cancer and neurodegeneration are depicted in Fig. 13.2.
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13.3.3 Cardiovascular disease and epigenetics
One of the main risk factors of cardiovascular disease (CVD) is age. Several studies
prove the major impact of epigenetic alterations in vascular function and arteriosclero-
sis, while histone deacetylase inhibitors are promising drugs to treat vascular diseases
and arteriosclerosis.198 When biological age is measured with the Horvath DNA
methylation-based method, for each year of additional biological age, the risk for
CVD occurrence increases by 4%.199 Many studies reveal associations between epige-
netic alterations through aging and CVD.200 Hypermethylation of genes coding for
superoxide dismutase-2 (SOD2), for histone 3 and for angiotensin I converting
enzyme 2 promoter increases the risk of essential hypertension. Reduced global DNA
methylation, hypomethylation of H3K79 and hyperacetylation at the promoter of the
endothelial oxide synthetase gene (eNOS) are associated with hypertension.201�203

Epigenetic changes are also implicated in the development of hypercholesterolemia
and atherosclerotic lesions. Patients with dyslipidemia have different methylation profiles
in genes regulating mitochondrial function and lipid metabolism. Patients with hypercho-
lesterolemia have hypermethylated promoters in genes that regulate transfer of cholesterol
and formation of atherosclerotic lesions is associated with enhanced histone acetylation
on H3K9 and H3K27 in the smooth muscle cells, as also altered methylation of several
genes.92,204�209 Methylation status of specific residues, such as H3K9, and the activity of
the SWI/SNF chromatin remodeler have been causative to cardiomyocytes patholo-
gies.210,211 Finally, several ncRNAs are involved in age-related CVD.212 Although there
are not experimental proofs to establish a causative relationship between age-dependent
epigenetic changes and CVD, these and several other findings suggest a strong correlation
between epigenetic alterations and the development of CVD with age.213

With the exception of cancer, neurodegeneration and CVD, increasing evidence
suggests that more age-related diseases, such as age-related renal, immune and meta-
bolic diseases are correlated with age-related epigenetic changes.214,215

Figure 13.2 Epigenetic alterations implicated in cancer and neurodegeneration development.
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13.4 Conclusions

Age-dependent epigenetic changes constitute a longevity denominator that promotes
age�related decline and pathologies. With age, several genetic, environmental and life-
style agents alter epigenetic identity of individuals, leading to epigenetic drift, which can
serve as a biomarker for “biological age” and functions as a regulator of physiology and
lifespan, even of next generations. Epigenetic alterations mainly impact transcription reg-
ulation and proteins translation, which affect activity of genes involved in healthspan
and lifespan determinations, such as genes participating in insulin signaling and responses
to diet, genomic stability, telomeres attrition, cellular differentiation, senescence, stress
responses and genes that are implicated in the onset and progress of age-dependent dis-
eases. Although the same type of epigenetic alterations can impact cellular homeostasis
and longevity in an opposite manner, dependent on the afflicted genomic areas, several
studies have attributed epigenetic changes on specific genomic areas to distinct pheno-
types and the onset of pathologies. However, research findings suggest that epigenetic
alterations do not exclusively lead to pathologies and physiological decline, but they can
even be beneficial for age-related physiological adaptations.94

Some difficulties impede the elucidation of the role of epigenetic mechanisms on
aging and the development of age-related diseases. The same type of epigenetic altera-
tions can have contradictory effects on health, depending on the specific histonic or
genomic residue affected. Also, the same residual modifications can have opposite
effects on cellular function in different animal model systems, thus making interpreta-
tion of research findings in humans’ physiology puzzling. Moreover, the strong inter-
connection between different epigenetic alterations hinders causative relationships
between such alterations and specific phenotypes. Nevertheless, in a simplistic, but
solid, speculation, age-related epigenetic changes observed in humans possibly impacts
aging phenotypes through the same mechanisms that laboratory-induced epigenetic
alterations use to modulate cellular physiology in animal model systems.

The importance of clinical epigenetics for human medical treatment lies on the revers-
ibility of epigenetic modifications. Adoption of a certain lifestyle, including increased physi-
cal activity, consumption of low-caloric foods and dietary polyphenols, changes in habits
such as tobacco smoking and alcohol consumption can reduce the effects of epigenetic drift
on physiological decline.100,216�219 Moreover, a group of chemicals that enhance longevity
through altering the epigenome has been described, which can potentially alleviate age-
related deterioration and pathologies in humans (Table 13.1). Furthermore, large arsenals of
drugs that target specific disease-related epigenetic modifications exist and can potentially
confront the development and symptomatology of age-related human diseases220 In the
future, the usage of such drugs, combined with the analysis of the epigenome “fingerprint”
of individuals, have the potential to revolutionize the contribution of clinical epigenetics in
geriatrics, through improving both diagnostics and treatments of human diseases.
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